Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean-Atmosphere Interaction
      • Ocean Time-series
      • US Biogeochemical-Argo
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for changing marine ecosystems – Page 4

Suddenly shallow: A new aragonite saturation horizon will soon emerge in the Southern Ocean

Posted by mmaheigan 
· Monday, May 27th, 2019 

Earth System Models (ESMs) project that by the end of this century, the aragonite saturation horizon (the boundary between shallower, saturated waters and deeper, undersaturated waters that are corrosive to aragonitic shells) will shoal all the way to the surface in the Southern Ocean, yet the temporal evolution of the horizon has not been studied in much detail. Rather than a gradual shoaling, a new shallow aragonite saturation horizon emerges suddenly across many locations in the Southern Ocean between now and the end of the century (Figure 1, left), as detailed in a new study published in Nature Climate Change.

Figure 1: Maximum step-change in the depth of the aragonite saturation horizon (left), timing of the step-change (center), and cause of the change (right). Xs on the time axis (center) indicate when the shallow horizon emerges in each ensemble member. (click image to enlarge)

 

The emergence of the shallow aragonite saturation horizon is apparent in each member of an ensemble of climate projections from an ESM, but the step change occurs during different years (Figure 1, center). The shoaling is driven by the gradual accumulation of anthropogenic CO2 in the Southern Ocean thermocline, where the carbonate ion concentration exhibits a local minimum and approaches undersaturation (Figure 1, right).

The abrupt shoaling of the Southern Ocean aragonite saturation horizon occurs under both business-as-usual and emission-stabilizing scenarios, indicating an inevitable and sudden decrease in the volume of suitable habitat for aragonitic organisms such as shelled pteropods, foraminifers, cold-water corals, sea urchins, molluscs, and coralline algae. Widespread reductions in these habitats may have far-reaching consequences for fisheries, economies, and livelihoods.

Authors:
Gabriela Negrete-García (Scripps Institution of Oceanography)
Nicole Lovenduski (University of Colorado Boulder)

 

See also OCB2019 plenary session: Carbon cycle feedbacks from the seafloor (Wednesday, June 26, 2019)

Ocean color offers early warning signal of climate change’s impact on marine phytoplankton

Posted by mmaheigan 
· Monday, April 15th, 2019 

Marine phytoplankton form the foundation of the marine food web and play a crucial role in the earth’s carbon cycle. Typically, satellite-derived Chlorophyll a (Chl a) is used to evaluate trends in phytoplankton. However, it may be many decades (or longer) before we see a statistically significant signature of climate change in Chl a due to its inherently large natural variability. In a recent study in Nature Communications, authors explored how other metrics, in particular the color of the ocean, may show earlier and stronger signals of climate change at the base of the marine food web.

Figure 1. Computer model results indicating the year in which the signature of climate change impact is larger than the natural variability for (a) Chl a, and (b) remotely sensed reflectance in the blue-green waveband. White areas indicate where there is not a statistically significant change by 2100, or for regions that are currently ice-covered.

 

In this study, the authors use a unique marine physical-biogeochemical and ecosystem model that also captures how light penetrates the ocean and is reflected upward. The model shows that over the course of the 21st century, remote sensing reflectance (RRS, the ratio of upwelling radiance to the downwelling irradiance at the ocean’s surface) in the blue-green portions of the light spectrum is likely to have an earlier, more spatially extensive climate change-driven signal than Chl a (Figure 1). This is because RRS integrates not only changes to Chl a, but also alterations in other optically important water constituents. In particular, RRS also captures changes in phytoplankton community structure, which strongly affects ocean optics and is likely to be altered over the 21st century. Monitoring the response of marine phytoplankton to climate change is important for predicting changes at higher trophic levels, including commercial fisheries. Our study emphasizes the importance of 1) maintaining ocean color sensor compatibility and long-term stability, particularly in the blue-green wavebands; 2) maintaining long-term in situ time-series of plankton communities – e.g., the Continuous Plankton Recorder survey and repeat stations (e.g., HOT, BATS); and 3) reducing uncertainties in satellite-derived phytoplankton community structure estimates.

 

Authors:
Stephanie Dutkiewicz, Oliver Jahn (Massachusetts Institute of Technology)
Anna E. Hickman (University of Southampton)
Stephanie Henson (National Oceanography Centre Southampton)
Claudie Beaulieu (University of California, Santa Cruz)
Erwan Monier (University of California, Davis)

Pteropod populations stable or increasing according to long-term study along the Western Antarctic Peninsula

Posted by mmaheigan 
· Thursday, March 21st, 2019 

Shelled pteropods (pelagic snails) are abundant planktonic predators and prey, linking grazers and higher trophic levels and contributing to the carbon cycle via consumption and excretion. Pteropods have been heralded as bioindicators of ocean acidification, given their aragonitic shell’s susceptibility to dissolution, which could ultimately lead to declining abundance. However, pteropod population dynamics are understudied, particularly in the Southern Ocean, a region predicted to be highly impacted by both warming and ocean acidification. In a recent publication in Limnology and Oceanography, long-term data sets from the Western Antarctic Peninsula show that while there is considerable interannual variability in pteropod abundance, populations have remained stable over the past 25 years, with some pteropod species (gymnosomes (non-shelled pteropod) overall, L. antarctica and C. pyramidata (shelled pteropods) regionally) even increasing during this period (Figure 1).


Figure 1. Annual pteropod abundance anomalies for the entire Palmer Antarctica Long-Term Ecological Research (LTER) study region along the Western Antarctic Peninsula. (a) Limacina helicina antarctica (shelled pteropod), (b) Gymnosomes – nonshelled pteropods that prey on shelled pteropods (p = 0.007, r2 = 0.27), and (c) Clio pyramidata (shelled pteropod). Effect of environment on pteropod abundance. (d) SST vs. L. antarctica abundance, e) Sea ice advance vs. L. antarctica and Gymnosome abundance, (f) Sea ice retreat vs. C. pyramidata abundance. Data plotted are annual anomalies for each year of the time series (1993–2017). Sea ice advance is lagged 2-yr behind pteropod abundance (e.g., 2017 pteropod annual anomaly is plotted against 2015 sea ice advance annual anomaly) SST are lagged 1-yr behind L. antarctica abundance (e.g., 2017 L. antarctica annual anomaly is plotted against 2016 SST). Regression lines for significant linear relationships are shown, regression statistics are as follows: (d) SST vs. L. antarctica (circles): n = 25, p = 0.006, r2 = 0.25 (e) sea ice advance vs. L. antarctica (filled-circles) and Gymnosomes (empty-circles): n = 25, p = 0.003, r2 = 0.30 (dashed line); (f) sea ice retreat vs. C. pyramidata (squares): n = 14, p = 0.0003, r2 = 0.64.

There was no significant influence of carbonate chemistry parameters (e.g., aragonite saturation state) on pteropod abundance, since the Western Antarctic Peninsula has yet to experience prolonged conditions characteristic of ocean acidification. However, other environmental factors such as warming and associated sea ice retreat were more influential. For example, warmer, ice-free waters in one year typically led to higher pteropod abundances the following year, suggesting that pteropods may be better adapted than expected to warming conditions due to climate change. The authors propose that earlier sea ice retreat promotes recruitment and subsequent expansion of pteropods further South, which could explain their increased abundance in this subregion. These results increase our understanding of pteropod responses to environmental variability, which is important for predicting future effects of climate change on regional carbon cycling and plankton trophic interactions in the Southern Ocean.

 

Authors:
Patricia S. Thibodeau (VIMS)
Deborah K. Steinberg (VIMS)
Sharon E. Stammerjohn (University of Colorado at Boulder)
Claudine Hauri (University of Alaska Fairbanks)

You better repeat it: Serial ocean acidification experiments on fish early life stages

Posted by mmaheigan 
· Tuesday, March 5th, 2019 

To detect potential effects of acidification on marine organisms, experimenters most commonly use within-experiment replication, but repeating the experiments themselves is rarely done. While the first approach suffices to detect major CO2 effects, other potentially important responses may get detected and robustly quantified only via serial experimentation. A study by Baumann et al. in Biology Letters comprises a meta-analysis of 20 standard CO2 exposure experiments conducted over six years on Atlantic silverside (Menidia menidia) offspring.

Figure 1: Robust estimate of silverside CO2 sensitivity based on serial experimentation. (A, B) Mean CO2 effect size calculated as the log-transformed response ratio of six early life history traits measured at 20 standard experiments between 2012-2017 (Error: bootstrapped 95% confidence intervals). (C) Seasonal change in CO2 sensitivity in silverside early life stages. Each symbol represents an individual experiment, using offspring obtained by fertilizing wild spawners throughout their spring/summer spawning season.

Silversides are an abundant and ecologically important forage fish in the North Atlantic. The study revealed that during early life stages, Atlantic silversides tolerate pCO2 levels up to ~2,000 µatm, with seasonal shifts in sensitivity. However, this early exposure to high pCO2 levels reduces embryo survival by 9% and overall survival by 13% (Figure 1). Future ocean acidification could cause reduced survival of these and other forage fish, and thus impact their diverse marine predators, including seabirds and commercially important fish species. This sustained experimental work resulted in the most robustly constrained estimates of average CO2 effect sizes for a marine organism to date, demonstrating the utility of serial experimentation as a powerful tool for assessing organism responses to changing CO2.

 

Authors:
Hannes Baumann
Emma L. Cross
Chris S. Murray
(all University of Connecticut)

When marine-terminating glaciers ‘pump’ the ocean

Posted by mmaheigan 
· Wednesday, October 10th, 2018 

How will increasing meltwater from Greenland affect the biogeochemistry of the ocean? Release of meltwater into the ocean has physical and biogeochemical effects on the local water column. With respect to nutrient availability, meltwater supplies the bioessential nutrients iron and silicic acid but is deficient in nitrate and phosphate. However, despite very low meltwater nitrate and phosphate concentrations, pronounced summertime phytoplankton blooms are observed in many, though not all, of Greenland’s large fjord systems. These unusual summertime blooms are associated with meltwater from marine-terminating glaciers. So if the meltwater itself is not supplying nitrate and phosphate that these blooms require, what is the source of the nutrients that support these blooms?

An illustration of how changing the depth of a glacier affects downstream productivity

A recent study published in Nature Communications shows that when meltwater is released below sea level under large marine-terminating glaciers, it rises rapidly towards the surface in buoyant discharge plumes. As these plumes rise, they entrain large quantities of deep, nutrient-rich seawater. This vertical transport, or ‘pumping’, of these nutrients to the surface sustains unusually high summertime productivity in Greenland’s fjords. Conversely, when meltwater is released at the ocean surface, primary production is reduced because the meltwater itself lacks the nitrate and phosphate required to fuel phytoplankton blooms. Consequently, the inland retreat of Greenland’s large marine-terminating glaciers is ultimately bad news for summertime marine phytoplankton communities. As the depth of the marine-terminating glaciers shoals, their associated nutrient ‘pumps’ collapse, which will likely have negative effects on primary production and associated inshore fisheries.

 

Authors:
M.J. Hopwood (GEOMAR)
D. Carroll (Jet Propulsion Laboratory)
T.J. Browning (GEOMAR)
L. Meire (Royal Netherlands Institute for Sea Research and Greenland Climate Research Centre)
J. Mortensen (Greenland Climate Research Centre)
S. Krisch (GEOMAR)
E.P. Achterberg (GEOMAR)

Feedbacks mitigate the impacts of atmospheric nitrogen deposition in the western North Atlantic

Posted by mmaheigan 
· Thursday, April 12th, 2018 

How do phytoplankton respond to atmospheric nitrogen deposition in the western North Atlantic, an area downwind of large agricultural and industrial centers? The biogeochemical impacts of this ‘fertilization’ remain unclear, as direct oceanic observations of atmospheric deposition are limited and models often cannot resolve the important processes.

In a recent study, St-Laurent et al. (2017) simulated the biogeochemical impacts of nitrogen deposition on surface waters of the western North Atlantic by combining year-specific deposition rates from the Community Multiscale Air Quality (CMAQ) model and a realistic 3-D biogeochemical model of the waters off the US east coast. Westerly winds from the continent and large fluxes of heat and moisture over the Gulf Stream produce a ‘hotspot’ of wet nitrogen deposition along the path of the current. This nitrogen input increases the local surface primary productivity by up to 30% during the summer. However, the study also identified important processes that mitigate the impact of atmospheric nitrogen deposition in other seasons and regions. Deposition weakens vertical nitrogen gradients in the upper 20 m and thus decreases the upward transport of nitrogen to the surface layer (a negative feedback). Increases in surface phytoplankton concentrations also negatively impact light availability below the surface through shelf-shading.

Atmospheric nitrogen deposition along the US east coast. (Left) Wet deposition of oxidized nitrogen over the Gulf Stream as simulated by the Community Multiscale Air Quality model (average 2004-2008). (Right) Increase in summer surface primary productivity in response to the deposition (average 2004-2008).

These results indicate that atmospheric nitrogen deposition has important impacts on the surface biogeochemistry of the western North Atlantic but that the response is not simply proportional to the deposition. Additional research is necessary to clarify the role played by atmospheric deposition in this region in past and future centuries. While inputs of atmospheric nitrogen associated with power plants and industries have decreased since the passage of the Clean Air Act, recent studies have revealed increasing atmospheric concentrations of reduced nitrogen. Continued coordination between modeling and observing efforts (both on land and over the ocean) are needed to improve our understanding of the impacts of deposition on the biological pump in this region of the Atlantic ocean.

 

Authors:
Pierre St-Laurent (VIMS, College of William and Mary)
Marjorie A.M. Friedrichs (VIMS, College of William and Mary)
Raymond G. Najjar (Pennsylvania State University)
Doug Martins (FLIR Systems Inc.)
Maria Herrmann (Pennsylvania State University)
Sonya K. Miller (Pennsylvania State University)
John Wilkin (Rutgers University)

Zooplankton play a key and diverse role in the ocean carbon cycle

Posted by mmaheigan 
· Thursday, December 7th, 2017 

How does the enormous diversity of zooplankton species, life cycles, size, feeding ecology, and physiology affect their role in ocean food webs and cycling of carbon?

In the 2017 issue of Annual Review of Marine Science, Steinberg and Landry review the fundamental and multifaceted roles that zooplankton play in the cycling and export of carbon in the ocean. Carbon flows through marine pelagic ecosystems are complex due to the diversity of zooplankton consumers and the many trophic levels they occupy in the food web–from single-celled herbivores to large carnivorous jellyfish. Zooplankton also contribute to carbon export processes through a variety of mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations).


Figure 1.  Pathways of cycling and export of carbon by zooplankton in the ocean.

Climate change and other stressors are already affecting zooplankton abundance, distribution, and life cycles, and are predicted to result in widespread changes in zooplankton carbon cycling in the future. These changes will affect both the larger marine food web that depends upon zooplankton for food (fish) or recycled products for growth (primary producers) and the amount of carbon exported into the deep sea–where far from contact with the atmosphere it no longer contributes to global warming.

 

Authors:

Deborah K. Steinberg, Virginia Institute of Marine Science, The College of William and Mary
Michael R. Landry, Scripps Institution of Oceanography

Phytoplankton increase projected for the Ross Sea in response to climate change

Posted by mmaheigan 
· Thursday, October 26th, 2017 

How will phytoplankton respond to climate changes over the next century in the Ross Sea, the most productive coastal waters of Antarctica? Model projections of physical conditions suggest substantial environmental changes in this region, but associated impacts on Ross Sea biology, specifically phytoplankton, remain unclear.

In a recent study, Kaufman et al (2017) generated and analyzed model scenarios for the mid- and late-21st century using a combination of a biogeochemical model, hydrodynamic simulations forced by a global climate projection, and new data from autonomous gliders. These scenarios indicate increases in the production of phytoplankton in the Ross Sea and increases in the downward flux of carbon in response to environmental changes over the next century. Modeled responses of the different phytoplankton groups to shoaling mixed layer depths shift the biomass composition more towards diatoms by the mid 21st century. While diatom biomass remains relatively constant in the second half of the 21st century, the haptophyte Phaeocystis antarctica biomass increases as a result of earlier seasonal sea ice melt, allowing earlier availability of low light, in which P. antarctica thrive.

 

Modeled climate scenarios for the 21st century project phytoplankton composition changes and increases in primary production and carbon export flux, primarily as a result of shoaling mixed layer depths and earlier available low light.

The projected responses of phytoplankton composition, production, and carbon export to climate-related changes can have broad impacts on food web functioning and nutrient cycling, with wide-ranging potential effects as local deep waters are transported out from the Ross Sea continental shelf. Future changes to this ecosystem have taken on a new relevance as the Ross Sea became home this year to the world’s largest Marine Protected Area, designed to protect critical habitat for highly valued species that rely on the Ross Sea food web. Continued coordination between modeling and autonomous observing efforts is needed to provide vital data for global ocean assessments and to improve our understanding of ecosystem dynamics and climate change impacts in this sensitive and important region.

 

For other relevant work on observing phytoplankton characteristics in the Ross Sea using gliders, please see: https://doi.org/10.1016/j.dsr.2014.06.011.

And for assimilation of bio-optical glider data in the Ross Sea please see: https://doi.org/10.5194/bg-2017-258.

 

Authors:
Daniel E. Kaufman (VIMS, College of William and Mary)
Marjorie A. M. Friedrichs (VIMS, College of William and Mary)
Walker O. Smith Jr. (VIMS, College of William and Mary)
Eileen E. Hofmann (CCPO, Old Dominion University)
Michael S. Dinniman (CCPO, Old Dominion University)
John C. P. Hemmings (Wessex Environmental Associates; now at the UK Met Office)

 

Phytoplankton can actively diversify their migration strategy in response to turbulent cues

Posted by mmaheigan 
· Thursday, August 17th, 2017 

Turbulence is known to be a primary determinant of plankton fitness and succession. However, open questions remain about whether phytoplankton can actively respond to turbulence and, if so, how rapidly they can adapt to it. Recent experiments have revealed that phytoplankton can behaviorally respond to turbulent cues with a rapid change in shape, and this response occurs over a few minutes. This challenges a fundamental paradigm in oceanography that phytoplankton are passively at the mercy of turbulence.

Phytoplankton are photosynthetic microorganisms that form the base of most aquatic food webs, impact global biogeochemical cycles, and produce half of the world’s oxygen. Many species of phytoplankton are motile and migrate in response to gravity and light levels: Upward toward light during the day to photosynthesize and downward at night toward higher nutrient concentrations. Disruption of this diurnal migratory strategy is an important contributor to the succession between motile and non-motile species when conditions become more turbulent. However, this classical view neglects the possibility that motile species can actively respond in an effort to avoid layers of strong turbulence. A recent study by Sengupta, Carrara and Stocker, published in Nature has shown that some raphidophyte and dinoflagellate phytoplankton can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by the smallest turbulent eddies in the ocean. Laboratory experiments in which cells experienced repeated overturning with timescales and statistics representative of ocean turbulence revealed that over timescales as short as ten minutes, an upward-swimming population split into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful algal bloom-forming raphidophyte Heterosigma akashiwo revealed that this behavior was accompanied by a change in cell shape, wherein the cells that changed their swimming direction did so by going from an asymmetric pear shape to a more symmetric egg shape. A model of cell mechanics showed that the magnitude of this shift was minute, yet sufficient to invert the cells’ preferential swimming direction. The results highlight the advanced level of control that phytoplankton have on their migratory behavior.

Understanding how fluctuations in the oceans’ turbulence landscape impacts phytoplankton is of fundamental importance, especially for predicting species succession and community structure given projected climate-driven changes in temperature, winds, and upper ocean structure.

An upward-swimming phytoplankton population splits into upward- and downward-swimming sub-populations when exposed to turbulent eddies, due to a subtle change in cell shape. Illustration by: A. Sengupta, G. Gorick, F. Carrara and R. Stocker

 

This work was co-funded by a Human Frontier Science Program Cross Disciplinary Fellowship (LT000993/2014-C to A.S.), a Swiss National Science Foundation Early Postdoc Mobility Fellowship (to F.C.), and a Gordon and Betty Moore Marine Microbial Initiative Investigator Award (GBMF 3783 to R.S.)

 

Scientists reveal major drivers of aragonite saturation state in the Gulf of Maine, a region vulnerable to acidification

Posted by mmaheigan 
· Thursday, May 11th, 2017 

The Gulf of Maine (GoME) is a shelf region that is especially vulnerable to ocean acidification (OA). GoME’s shelf waters display the lowest mean pH, aragonite saturation state (Ω-Ar), and buffering capacity of the entire U.S. East Coast. These conditions are a product of many unique characteristics and processes occurring in the GoME, including relatively low water temperatures that result in higher CO2 solubility; inputs of fresher, low-alkalinity water that is traceable to the rivers discharging into the Labrador Sea to the north, as well as local inputs of low-pH river water; and its semi-enclosed nature (long residence time >1 year), which enables the accumulation of respiratory products, i.e. CO2.

A recent study by Wang et al. (2017) is the first to assess the major oceanic processes controlling seasonal variability of aragonite saturation state and its linkages with pteropod abundance in the GoME. The results indicate that surface production was tightly coupled with remineralization in the benthic nepheloid layer during highly productive seasons, resulting in occasional aragonite undersaturation. Mean water column Ω-Ar and abundance of large thecosomatous pteropods show some correlation, although discrete cohort reproductive success likely also influences their abundance. Photosynthesis-respiration is the primary driving force controlling Ω-Ar variability over the seasonal cycle. However, calcium carbonate (CaCO3) dissolution appears to occur at depth in fall and winter months when bottom water Ω-Ar is generally low but slightly above 1. This is accompanied by a decrease in pteropod abundance that is consistent with previous CaCO3 flux trap measurements.

Figure. Changes of aragonite saturation states (ΔΩ) between three consecutive cruises from April – July 2015 as a function of changes in salinity-normalized DIC (ΔenDIC, including correction of freshwater inputs) (a) and changes in salinity-normalized TA (ΔenTA, including correction of freshwater inputs) (b). The data points circled in (b) represent potential alkalinity sources from CaCO3 dissolution and/or anaerobic respiration. Solid lines are theoretical lines of ΔΩ vs. ΔenDIC and ΔΩ vs. ΔenTA expected if only photosynthesis and respiration/remineralization occur. Dashed lines are theoretical lines if only calcification and dissolution of CaCO3 occur.

Under the current rate of OA, the mean Ω-Ar of the subsurface and bottom waters of the GoME will approach undersaturation (Ω-Ar < 1) in 30-40 years. As photosynthesis and respiration are the major driving mechanisms of Ω-Ar variability in the water column, any biological regime changes may significantly impact carbonate chemistry and the GoME ecosystem, including the CaCO3 shell-building capacity of organisms that are critical to the GoME food web.

 

Author:

Zhaohui Aleck Wang (Woods Hole Oceanographic Institution)

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater AT Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms AUVs bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation clouds CO2 CO3 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea NPP nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.