Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean-Atmosphere Interaction
      • Ocean Time-series
      • US Biogeochemical-Argo
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • OCB Activity Proposal Solicitation
    • Guidelines for OCB Workshops & Activities
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for New OCB Research – Page 2

The ocean is shifting toward phosphorus limitation

Posted by mmaheigan 
· Friday, February 28th, 2025 

Biogeochemical models predict that ocean warming is weakening the vertical transport of nutrients to the upper ocean, with severe implications for marine productivity. However, nutrient concentrations across the ocean surface often fall below detection limits, making it difficult to observe long-term changes.

In a recent study in PNAS, we analyzed over 30,000 nitrate and phosphate depth profiles observed between 1972 and 2022 to quantify nutricline depths, where nutrient concentrations are reliably detected. These depths accurately represent nutrient supplies in a global model, allowing us to assess long-term trends. Over the past five decades, upper ocean phosphate has mostly declined worldwide, while nitrate has remained mostly stable. Model simulations support that this difference is likely due to nitrogen fixation replenishing upper ocean nitrate, whereas phosphate has no equivalent biological source.

Figure caption: Five decades of global and regional nutricline depth data reveal declining phosphate-to-nitrate trends. Nutricline depths were defined based on threshold concentrations of 3 μmol kg−1 nitrate (TNO3) and 3/16 μmol kg−1 phosphate (TPO4). Site-specific trends were quantified for each unique pair of geographic coordinates where sufficient data was available (TNO3, n = 1,859 sites; TPO4, n = 1,641 sites). Shown are 95% confidence intervals (CI95%) calculated for each median trend by generating 10,000 bootstrap samples. The curves over the histograms depict the kernel densities. The sets of error bars from top to bottom are the interquartile ranges of TNO3 and TPO4 from a monthly climatology, the total observations, and the total observations with added measurement error.

These findings suggest that the ocean is becoming more limited in phosphorus. This decline could make phytoplankton less nutritious for marine animals. Fish larvae growth rates correlate with phosphorus availability in the ecosystem, so intensifying phosphorus limitation may greatly impact fisheries worldwide.

 

Authors
Skylar Gerace (University of California, Irvine)
Jun Yu (University of California, Irvine)
Keith Moore (University of California, Irvine)
Adam Martiny (University of California, Irvine)

@UCI_OCEANS

Persistent bottom trawling impairs seafloor carbon sequestration

Posted by mmaheigan 
· Friday, February 28th, 2025 

Bottom trawling, a fishing method that uses heavy nets to catch animals that live on and in the seafloor, could release a large amount of organic carbon from seafloor into the water, that metabolizes to CO2 then outgasses to the atmosphere. The magnitude of this indirect emission has been heavily debated, with estimates spanning from negligibly small to global climate relevant. Thus, a lack of reliable data and insufficient understanding of the process hinders management of bottom trawling for climate protection.

We set out to solve this problem in two steps. First, we analyzed a large field dataset containing more than 2000 sediment samples from one of the most intensely trawled regions globally, the North Sea. We identified a trawling-induced carbon reduction trend in the data, but only in samples taken in persistently intensively trawled areas with multi-year averaged swept area ratio larger than 1 yr-1. In less intensely trawled areas, there was no clear effect. In a second step, we applied numerical modelling to understand the processes behind the observed change (Fig. 1). Our model results suggest that bottom trawling annually releases one million tonnes of CO2 in the North Sea and 30 million tonnes globally. Along with sediment resuspension in the wake of the trawls, the main cause for altered sedimentary carbon storage is the depletion of macrofauna, whose locomotion and burrowing effectively buries freshly deposited carbon into deeper sediment layers. By contrast, macrofauna respiration is reduced owing to trawling-caused mortality, partly offsetting the organic carbon loss. Following a cessation of trawling, the simulated benthic biomass can recover in a few years, but the sediment carbon stock would take several decades to be restored to its natural state.

Figure 1. (a) Benthic–pelagic coupling in a natural system. (b) Processes involved in bottom trawling. (c) Model-estimated source and sink terms of organic carbon in surface sediments in the No-trawling (solid fill, n = 67 annual values for 1950–2016) and trawling (pattern fill, n = 67 ensemble-averaged values for 1950–2016) scenarios of the North Sea. © 2024, Zhang, W. et al., CC BY 4.0.

Marine conservation strategies traditionally favor hard bottoms, such as reefs, that are biologically diverse but accumulate limited amounts of organic carbon. Our results indicate that carbon in muddy sediments is more susceptible to trawling impacts than carbon in sand and point out a need to safeguard muddy habitats for climate protection. Our methods and results might be used in the context of marine spatial planning policies to gauge the potential benefits of limiting or ending bottom trawling within protected areas.

 

Zhang, W., Porz, L., Yilmaz, R. et al. Long-term carbon storage in shelf sea sediments reduced by intensive bottom trawling. Nat. Geosci. 17, 1268–1276 (2024). https://doi.org/10.1038/s41561-024-01581-4

Authors
Wenyan Zhang (Hereon)
Lucas Porz (Hereon)
Rümeysa Yilmaz (Hereon)
Klaus Wallmann (GEOMAR)
Timo Spiegel (GEOMAR)
Andreas Neumann (Hereon)
Moritz Holtappels (AWI)
Sabine Kasten (AWI)
Jannis Kuhlmann (BUND)
Nadja Ziebarth (BUND)
Bettina Taylor (BUND)
Ha Thi Minh Ho-Hagemann (Hereon)
Frank-Detlef Bockelmann (Hereon)
Ute Daewel (Hereon)
Lea Bernhardt (HWWI)
Corinna Schrum (Hereon)

Rain increases the global carbon sink

Posted by mmaheigan 
· Tuesday, January 28th, 2025 

The global ocean dampens the anthropic CO2 increase in the atmosphere by absorbing around 25% of the carbon emitted each year. Of the processes involved in exchanges of energy and mass between ocean and atmosphere that may impact this carbon sink, rainfall has never been systematically and comprehensively quantified. A study recently published in Nature Geosciences suggests that about 6% of the global ocean CO2 sink is mediated by rainfall.

Figure 1. Histograms of 2008-2018 global ocean (60°S-60°N) CO2 sink increase due to rain-induced turbulence only, rain-induced dilution only, the resultant of turbulence and dilution (named the interfacial effect), the wet deposition of CO2 absorbed during the raindrops fall and the total (interfacial plus wet deposition) using 1-h rain rates from IMERG (blue) and ERA5 (red). The rain-induced dilution is diagnosed from a satellite-derived empirical relationship (full) or a 1D physical model (stripes). Figure based on Parc et al. (2024) Table 1.

The exchange of CO2 at the ocean interface is controlled by chemical, physical, and biological properties and processes. Rainfall, one of these processes, can alter the properties of the ocean surface and perturb the carbon exchange in three ways:

(i) Turbulence: Raindrops increase the momentum transfer to the ocean and generate turbulence enhancing the renewal of interfacial water (first column in Fig. 1). This tends to increase both in- and out-gassing. The impact of this effect alone is weak because wind dominates the generation of turbulence in the ocean;

(ii) Dilution + Interfacial: Rain dilutes and cools the near surface waters, which perturbs chemical equilibria and leads the ocean to absorb more CO2 (second column in Fig. 1). The result of dilution and turbulence effects of rain, which is named “Interfacial”, is a clear increase in global CO2 sink (third column in Fig. 1);

(iii) Wet deposition: Finally, raindrops directly inject CO2 molecules into the ocean that they absorbed during their fall through the atmosphere (fourth column in Fig. 1).

Using two rainfall datasets (the satellite-derived product IMERG and the ERA5 reanalysis) and two ways to quantify the rain-induced dilution, the authors show that rain increases the ocean carbon sink by 140 to 190 million tonnes of carbon per year, equivalent to 5% to 7% of the 2.66 billion tonnes of carbon absorbed annually by the oceans. Because rainfall amounts and patterns will change in the future, impacting the ocean carbon sink, these results call for explicitly including rain effects in the annual global carbon budget estimates.

Authors
Laëtitia Parc (Laboratoire de Météorologie Dynamique)
Hugo Bellenger (Laboratoire de Météorologie Dynamique)
Laurent Bopp (Laboratoire de Météorologie Dynamique) @bopplaurent.bsky.social
Xavier Perrot (Laboratoire de Météorologie Dynamique)
David T. Ho (University of Hawaii at Manoa; [C]Worthy) @davidho.bsky.social

 

Parc, L., Bellenger, H., Bopp, L., Perrot, X., and Ho, D. T. Global ocean carbon uptake enhanced by rainfall.Nat. Geosci. 17, 851–857 (2024). https://doi.org/10.1038/s41561-024-01517-y

Deep dive into carbon transport: How bacteria feast and compete on lipids in sinking particles

Posted by mmaheigan 
· Tuesday, January 28th, 2025 

What drives carbon from the atmosphere to the deep ocean? The journey of phytoplankton-derived carbon is critical in the global carbon cycle, yet the influence of interacting bacteria in degrading lipid-rich particles during their descent has remained a mystery—until now.

Using an innovative combination of nano-scale lipidomics and microscopy, researchers investigated how bacteria target and degrade diverse lipid molecules in sinking oceanic particles. The study, published in Science, revealed that bacteria exhibit distinct dietary preferences, governed by their lipid-degrading genes rather than taxonomic affiliation. Interactions among bacteria influenced both degradation rates and timing, together reshaping our view on the efficiency of lipid transport to the ocean depths. These findings were incorporated into a mathematical model, revealing how microbial communities could regulate the carbon transfer efficiency.

This research enhances our understanding of the ocean’s carbon pump, highlighting the pivotal role of bacterial communities in carbon sequestration. By uncovering how microbial interactions affect carbon transfer, these findings improve climate models and support the development of strategies to mitigate atmospheric CO2.

Authors
Lars Behrendt (Uppsala University, Sweden)
Benjamin van Mooy (Woods Hole Oceanographic Institution)

Twitter: LarsBehrendt4
Bluesky: @belab1.bsky.social

OA could boost carbon export by appendicularia

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

Gelatinous zooplankton comprise a widespread group of animals that are increasingly recognized as important components of pelagic ecosystems. Historically understudied, we have little knowledge of how much key taxa contribute to carbon fluxes. Likewise, there’s a critical knowledge gap of the impact of ocean change on these taxa.

Appendicularia are the most abundant gelatinous zooplankton in the world oceans. Their population dynamics display typical boom-and-bust characteristics, i.e. high grazing rates in combination with a short generation time and life cycle, results in intense blooms. The most prominent feature of appendicularians is their mucous feeding-structure (“house”), which is produced and discarded several times per day. These sinking houses can contribute substantially to carbon export.

Figure 1: Influence of ocean acidification on the Appendicularia Oikopleura dioica and carbon export. Appendicularian populations display typical boom-and-bust characteristics, resulting in intense blooms. The sinking of appendicularians’ discarded mucous feeding-structure several times per day can contribute substantially to carbon export. Low pH conditions (as expected for future ocean acidification extreme events) enhanced its population growth and contribution to carbon fluxes shown above (red lines/diamonds) vs ambient (blue lines/diamonds).
(Figure sources: Picture by Jean-Marie Bouquet, data plots from Taucher et al. (2024): The appendicularian Oikopleura dioica can enhance carbon export in a high CO2 ocean. Global Change Biology, doi:10.1111/gcb.17020)

A recent study in Global Change Biology quantified how much appendicularia can contribute to carbon export via the biological pump, and how this carbon flux could markedly increase under future ocean acidification and associated extreme pH events.

The findings are based on a large-volume in situ experimental approach that allowed observing natural plankton populations and carbon export under close-to-natural conditions for almost two months. Thereby, O. dioica population dynamics could be directly linked to sediment trap data to quantify the influence of this key species on carbon fluxes at unprecedented detail. During the appendicularia bloom up to 39% of total carbon export was attributed to them.

The most striking finding was that high CO2 conditions elevated carbon export by appendicularia increased by roughly 50%. Appendicularians physiologically benefit from low pH conditions, giving them a competitive advantage over other zooplankton, allowing them to contribute to a disproportionally large role in carbon export from the ecosystem.

Authors
Jan Taucher (GEOMAR)
Anna Katharina Lechtenbörger (GEOMAR)
Jean-Marie Bouquet (University of Bergen)
Carsten Spisla (GEOMAR)
Tim Boxhammer (GEOMAR)
Fabrizio Minutolo (GEOMAR)
Lennart Thomas Bach (University of Tasmania)
Kai T. Lohbeck (University of Konstanz)
Michael Sswat (GEOMAR)
Isabel Dörner (GEOMAR)
Stefanie M. H. Ismar-Rebitz (GEOMAR)
Eric M. Thompson (University of Bergen)
Ulf Riebesell (GEOMAR)

Quantifying uncertainties in future projections of Chesapeake Bay Hypoxia

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

Climate change is expected to especially impact coastal zones, worsening deoxygenation in the Chesapeake Bay by reducing oxygen solubility and increasing remineralization rates of organic matter. However, simulated responses of this often fail to account for uncertainties embedded within the application of future climate scenarios.

Recent research published in Biogeosciences and in Scientific Reports sought to tackle multiple sources of uncertainty in future impacts to dissolved oxygen levels by simulating multiple climate scenarios within the Chesapeake Bay region using a coupled hydrodynamic-biogeochemical model. In Hinson et al. (2023), researchers showed that a multitude of climate scenarios projected a slight increase in hypoxia levels due solely to watershed impacts, although the choice of global earth system model, downscaling methodology, and watershed model equally contributed to the relative uncertainty in future hypoxia estimates. In Hinson et al. (2024), researchers also found that the application of climate change scenario forcings itself can have an outsized impact on Chesapeake Bay hypoxia projections. Despite using the same inputs for a set of three experiments (continuous, time slice, and delta), the more commonly applied delta method projected an increase in levels of hypoxia nearly double that of the other experiments. The findings demonstrate the importance of ecosystem model memory, and fundamental limitations of the delta approach in capturing long-term changes to both the watershed and estuary. Together these multiple sources of uncertainty interact in unanticipated ways to alter estimates of future discharge and nutrient loadings to the coastal environment.

Figure 1: Chesapeake Bay hypoxia is sensitive to multiple sources of uncertainty related to the type of climate projection applied and the effect of management actions. Percent contribution to uncertainty from Earth System Model (ESM), downscaling methodology (DSC), and watershed model (WSM) for estimates of (a) freshwater streamflow, (b) organic nitrogen loading, (c) nitrate loading, and (d) change in annual hypoxic volume (ΔAHV). (e) Summary of all experiment results for ΔAHV, expressed as a cumulative distribution function. The Multi-Factor experiment (blue line) used a combination of multiple ESMs, DSCs, and WSMs, the All ESMs experiment (pink line) simulated 20 ESMs while holding the DSC and WSM constant, and the Management experiment (green line) only simulated 5 ESMs with a single DSC and WSM but incorporated reductions in nutrient inputs to the watershed. The vertical dashed black line marks no change in AHV.

Understanding the relative sources of uncertainty and impacts of environmental management actions can improve our confidence in mitigating negative climate impacts on coastal ecosystems. Better quantifying contributions of model uncertainty, that is often unaccounted for in projections, can constrain the range of outcomes and improve confidence in future simulations for environmental managers.

Figure 2: A schematic of differences between the Continuous and Delta experiments. In the Delta experiment a combination of altered distributions in future precipitation and changes to long-term soil nitrogen stores eventually result in increased levels of hypoxia (right panel).

 

Authors
Kyle E. Hinson (Virginia Institute of Marine Science, William & Mary)
Marjorie A. M. Friedrichs (Virginia Institute of Marine Science, William & Mary)
Raymond G. Najjar (The Pennsylvania State University)
Maria Herrmann (The Pennsylvania State University)
Zihao Bian (Auburn University)
Gopal Bhatt (The Pennsylvania State University, USEPA Chesapeake Bay Program Office)
Pierre St-Laurent (Virginia Institute of Marine Science, William & Mary)
Hanqin Tian (Boston College)
Gary Shenk (USGS Virginia/West Virginia Water Science Center)

Swirling Currents: How Ocean Mesoscale Affects Air-Sea CO2 Exchange

Posted by mmaheigan 
· Friday, October 25th, 2024 

Due to a sparsity of in‐situ observations and the computational burden of eddy‐resolving global simulations, there has been little analysis on how mesoscale processes (e.g., eddies, meanders—lateral scales of 10s to 100s km) influence air‐sea CO2 fluxes from a global perspective. Recently, it became computationally feasible to implement global eddy‐resolving [O (10) km] ocean biogeochemical models. Many questions related to the influence of mesoscale motions on CO2 fluxes remain open, including whether ocean eddies serve as hotspots for CO2 sink or source in specific dynamic regions.

A recent study in Geophysical Research Letters investigated the contribution of ocean mesoscale variability to air-sea CO2 fluxes by analyzing the CO2 flux anomaly within the mesoscale band using a coarse-graining approach in a global eddy-resolving biogeochemical simulation. We found that in eddy-rich mid-latitude regions, ocean mesoscale variability can contribute to over 30% of the total CO2 flux variability. The cumulative net CO2 flux associated with mesoscale motions is on the order of 105 tC per year. The global pattern of cumulative mesoscale-related CO2 flux exhibits significant spatial heterogeneity, with the highest values in western boundary currents, the Antarctic Circumpolar Current, and the equatorial Pacific. The local distribution of cumulative mesoscale-related CO2 flux displays zonal bands alternate between positive (a net source) and negative (a net sink) due to the meandering nature of ocean mesoscale currents, which is related to local relative vorticity and the background cross-stream pCO2 gradient.

Figure caption. Mesoscale (<nominal 2 degree) contribution to air‐sea CO2 flux (F<2°CO2)in the model. (a)–(d) Monthly time series of F<2°CO2 (black lines) and cumulative F<2°CO2 (green/red solid lines) in four locations marked in (e). Dashed lines are the least squares regression of cumulative flux for the period 1982–2000; slopes are indicated in the bottom left; (e) Blue colors imply a CO₂ sink, and red colors represent a source. The figure shows the global distribution of the regressed slopes of cumulative F<2°CO2. Units are converted from mol m-2 per year to kg of CO2 per year using the atomic mass of CO2. This figure shows significant spatial heterogeneity of mesoscale-modulated CO2 flux, showing contributions to both CO₂ sources and sinks across different regions of the ocean, with a magnitude on the order of 105 tC per year.

 

Authors
Yiming Guo (Yale University; now at Woods Hole Oceanographic Institution)
Mary-Louise Timmermans (Yale University)

How tiny teeth and their prey shape ocean ecosystems

Posted by mmaheigan 
· Friday, October 25th, 2024 

It has long been suggested that diatoms, microscopic algae enclosed in silica-shells, developed these structures to defend against predators like copepods, small crustaceans that graze diatoms. Copepods evolved silica-lined teeth presumably to counteract this. But actual evidence for how this predator-prey relationship may drive natural selection and evolutionary change has been lacking.

Figure caption: Left: Copepod teeth may suffer damage when feeding on thick-shelled diatoms. The red arrows indicate damage to the copepod tooth, cracks or missing setae. When fed a large diatom, the row of spinose cusps was damaged in all analyzed teeth. Scale bar = 10 µm. Right: A Temora longicornis (ca. 750 µm) copepod tethered to a human hair using super glue, allowing for the capture of high-speed videography to quantify the fraction of cells that eaten or discarded by the copepod. The hair was kindly provided by the first author’s wife.

A recent publication in Proceedings of the National Academy of Sciences U.S.A. revealed a fascinating dynamic: Copepods that feed on diatoms may suffer significant damage to their teeth, causing them to become more selective eaters. The wear and tear on the copepod teeth were particularly pronounced when copepods consumed thick-shelled diatoms compared to “softer” prey like a dinoflagellate. By glueing copepods to human hair and filming them with a high-speed video camera, the authors found that copepods with damaged teeth were more likely to reject diatoms with thick shells than those with thin shells as prey. Shell thickness varies among and within diatom species and some can respond to copepod presence by increasing shell thickness. A thicker shell, however, may come at a cost to the cell in terms of reduced growth rate or increased sinking speed.  This suggests that the evolutionary “arms race” between diatoms and copepods plays a crucial role in shaping and sustaining the diversity of these species.

Diatoms and copepods are important organisms in global biogeochemical cycles and hence understanding this microscopic interaction can help predict shifts in marine ecosystems, potentially affecting nutrient cycles and food webs that support fisheries.

 

Authors
Fredrik Ryderheim (Technical University of Denmark/University of Copenhagen)
Jørgen Olesen (University of Copenhagen)
Thomas Kiørboe (Technical University of Denmark)

 

Twitter
@fryderheim (Fredrik Ryderheim)
@OlesenCrust (Jørgen Olesen)
@Thomaskiorboe (Thomas Kiørboe)
@OceanLifeCentre (FR, TK group at DTU)
@NHM_Denmark (Natural History Museum of Denmark, JO employer)

Fast-sinking salp and fish detritus impacts OMZ size and ocean biogeochemical cycles

Posted by mmaheigan 
· Thursday, September 12th, 2024 

Marine fishes and filter-feeding gelatinous zooplankton such as salps and pyrosomes generate detritus in the form of poop and dead carcasses, which sink ~10 times faster than other oceanic detritus. This detritus is hypothesized to have a disproportionally large impact on the marine biological pump as it sequesters carbon and nutrients deeper in the water column. Until now, global models had not considered these fluxes, thus, their impacts on ocean biogeochemical cycles were not well understood.

A recent study in Geophysical Research Letters investigated the sensitivity of deep ocean carbon, oxygen, and nutrient cycles to fast-sinking detritus from filter-feeding gelatinous zooplankton (pelagic tunicates) and fishes, using a modified version of the NOAA-GFDL ocean biogeochemical model COBALT (“GZ-COBALT”). We found the fast-sinking detritus decreased surface productivity and export, while increasing transfer efficiency and sequestration at depth. Ocean oxygen minimum zones (OMZs) also decreased in size: fast-sinking detritus triggered less remineralization, particularly in the mid-depths, resulting in less oxygen consumption and a reduced expansion of OMZs.

Figure caption: Flux of detrital carbon at various depths (A, B, C), shows that incorporating fast-sinking detritus counter-intuitively decreases carbon export from the surface while increasing sequestration at depth. Particulate organic carbon (POC) export flux at (A) 100 m, (B) 1,000 m and (C) seafloor (mgC/m2/d), shows (left) the control simulation with no fast-sinking detritus, (center) the experiment with fast-sinking fish and gelatinous zooplankton detritus, and (right) the differences between the control and fast-sinking detritus simulation. (D) Total ocean volume over the 300-year simulation at the suboxic (O2 ≤ 5 mmol/m3) level, shows the simulation with fast-sinking particulate organic carbon (red) had lower suboxia than the control (black). Large hypoxic and suboxic zones are a common model bias; these results suggest that fast-sinking detritus may be one biogeochemical mechanism to reduce the expansion of these low oxygen zones.

Past observations have shown that fast-sinking, highly reactive detritus reaching the seafloor can fuel significant benthic consumption and respiration. On a global scale, we suggest that the increased fluxes to the seafloor in the model can be supported by observational constraints of seafloor oxygen consumption, suggesting that these processes could be realistically incorporated into future generations of Earth System Models.

 

Authors
Jessica Y. Luo (NOAA GFDL)
Charles A. Stock (NOAA GFDL)
John P. Dunne (NOAA GFDL)
Grace K. Saba (Rutgers University)
Lauren Cook (Rutgers University)

The fate of the 21st century marine carbon cycle could hinge on zooplankton’s appetite

Posted by mmaheigan 
· Wednesday, September 11th, 2024 

Both climate change and the efforts to abate have the potential to reshape phytoplankton community composition, globally. Shallower mixed layers in a warming ocean and many marine CO2 removal (CDR) technologies will shift the balance of light, nutrients, and carbonate chemistry, benefiting certain species over others. We must understand how such shifts could ripple through the marine carbon cycle and modify the ocean carbon reservoir. Two new publications in Geophysical Research Letters and Global Biogeochemical Cycles highlight an often over looked pathway in this response: The appetite of zooplankton.

We have long known that the appetite of zooplankton—i.e. the half-saturation concertation for grazing—varies dramatically. This variability is largely based on laboratory incubations of specific species. An open-ocean perspective has been much more elusive. Using two independent inverse modelling approaches, both studies reached the same conclusion: Even at the community level, the appetite of zooplankton in the open-ocean is incredibly diverse.

Moreover, variability in zooplankton appetites maps well onto the biogeography of phytoplankton species. As these phytoplankton niches evolve, the composition of the zooplankton will likely follow. To help understand the impact of this response on the biological pump, we compared two models, one with only two types of zooplankton, and another with an unlimited amount, each with different appetites, all individually tuned to their unique environment. Including more realistic diversity reduced the strength of the biological pump by 1 PgC yr-1.

Figure Caption. A) Variability in the abundance and characteristic composition of phytoplankton drives B) large differences in the associated appetite and characteristic composition of zooplankton in two independent inverse modelling studies. C) When more realistic diversity in the appetite of zooplankton is simulated in models, the strength of biological pump is dramatically reduced.

That is the same order as the most optimistic scenarios for ocean iron fertilization. This means that when simulating the efficacy of many CDR scenarios, the bias introduced by insufficiently resolved zooplankton diversity could be just as large as the signal. Moving forward, it is imperative to improve the representation of zooplankton in Earth System Models to understand how the marine carbon sink will respond to inadvertent and deliberate perturbations.

Related article in The Conversation: https://theconversation.com/marine-co-removal-technologies-could-depend-on-the-appetite-of-the-oceans-tiniest-animals-227156

Authors (GRL):
Tyler Rohr (The University of Tasmania; Australian Antarctic Program Partnership)
Anthony Richardson (The University of Queensland; CSIRO)
Andrew Lenton (CSIRO)
Matthew Chamberlain (CSIRO)
Elizabeth Shadwick (Australian Antarctic Program Partnership; CSIRO)

Authors (GBC):
Sophie Meyjes (Cambridge)
Colleen Petrick (Scripps Institute of Oceanography)
Tyler Rohr (The University of Tasmania; Australian Antarctic Program Partnership)
B.B. Cael (NOC)
Ali Mashayek (Cambridge)

 

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater AT Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms AUVs bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation clouds CO2 CO3 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global ocean models global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age iceberg ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater migration minerals mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade N2 n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea NPP nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake & storage ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey predators prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline python radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonal effects seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water column water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.