Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean-Atmosphere Interaction
      • Ocean Time-series
      • US Biogeochemical-Argo
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Author Archive for mmaheigan – Page 19

Tiny, but effective: Gelatinous zooplankton and the ocean biological carbon pump

Posted by mmaheigan 
· Wednesday, March 25th, 2020 

Barely visible to the naked eye, gelatinous zooplankton play important roles in marine food webs. Cnidaria, Ctenophora, and Urochordata are omnipresent and provide important food sources for many more highly developed marine organisms. These small, nearly transparent organisms also transport large quantities of “jelly-carbon” from the upper ocean to depth. A recent study in Global Biogeochemical Cycles focused on quantifying the gelatinous zooplankton contribution to the ocean carbon cycle.

Figure 1. Processes and pathways or gelatinous carbon transfer to the deep ocean.

Using >90,000 data points (1934 to 2011) from the Jellyfish Database Initiative (JeDI), the authors compiled global estimates of jellyfish biomass, production, vertical migration, and jelly carbon transfer efficiency. Despite their small biomass relative to the total mass of organisms living in the upper ocean, their rapid, highly efficient sinking makes them a globally significant source of organic carbon for deep-ocean ecosystems, with 43-48% of their upper ocean production reaching 2000 m, which translates into 0.016 Pg C yr-1.

Figure 2. Mass deposition event of jellyfish at 3500 m in the Arabian Sea (Billett et al. 2006).

Sediment trap data have suggested that carbon transport associated with large, episodic gelatinous blooms in localized open ocean and continental shelf regions could often exceed phytodetrital sources, in particular instances. These mass deposition events and their contributions to deep carbon export must be taken into account in models to better characterize marine ecosystems and reduce uncertainties in our understanding of the ocean’s role in the global carbon cycle.

Links:

Jellyfish Database Initiative http://jedi.nceas.ucsb.edu, http://jedi.nceas.ucsb.edu-dmo.org/dataset/526852 )

 

Authors:
Mario Lebrato (Christian‐Albrechts‐University Kiel and Bazaruto Center for Scientific Studies, Mozambique)
Markus Pahlow (GEOMAR)
Jessica R. Frost (South Florida Water Management District)
Marie Küter (Christian‐Albrechts‐University Kiel)
Pedro de Jesus Mendes (Marine and Environmental Scientific and Technological Solutions, Germany)
Juan‐Carlos Molinero (GEOMAR)
Andreas Oschlies (GEOMAR)

Chasing Sargassum in the Atlantic Ocean

Posted by mmaheigan 
· Wednesday, March 25th, 2020 

The pelagic brown alga Sargassum forms a habitat that hosts a rich diversity of life, including other algae, crustaceans, fish, turtles, and birds in both the Gulf of Mexico and the area of the Atlantic Ocean known as the Sargasso Sea. However, high abundances of Sargassum have been appearing in the tropical Atlantic, in some cases 3,000 miles away from the Sargasso Sea. This is a new phenomenon. Nearly every year since 2011, thick mats of Sargassum have blanketed the coastlines of many countries in tropical Africa and the Americas. When masses of Sargassum wash ashore, the seaweed rots, attracts insects, and repels beachgoers, with adverse ecological and socioeconomic effects. A new study in Progress in Oceanography sheds light on the mystery.

Figure 1. The hypothesized route of Sargasso Sea Sargassum to the tropical Atlantic and the Caribbean Sea. The solid black lines indicate the climatological surface flow, the dashed black lines indicate areas where there was variability from the average conditions.

The authors analyzed reams of satellite data and used computer models of the Earth’s winds and ocean currents to try to understand why these large mats started to arrive in coastal areas in 2011. A strengthening and southward shift of the westerlies in the winter of 2009-2010 caused ocean currents to move the Sargassum toward the Iberian Peninsula, then southward in the Canary Current along Africa, where it entered the tropics by the middle of 2010 (Figure 1). The tropical Atlantic provided ample sunlight, warmer sea temperatures, and nutrients for the algae to flourish. In 2011, Sargassum spread across the entire tropical Atlantic in a massive belt north of the Equator, along the Intertropical Convergence Zone (ITCZ), and these blooms have appeared nearly every year since. Utilizing international oceanographic studies done in the Atlantic since the 1960s, and multiple satellite sensors combined with Sargassum distribution patterns, the authors discovered that the trade winds aggregate the Sargassum under the ITCZ and mix the water deep enough to bring new nutrients to the surface and sustain the bloom.

Improved understanding and predictive capacity of Sargassum bloom occurrence will help us better constrain and quantify its impacts on our ecosystems, which can inform management of valuable fisheries and protected species.

 

Authors:
Elizabeth Johns (NOAA AMOL)
Rick Lumpkin (NOAA AMOL)
Nathan Putman (LGL Ecological Research Associates)
Ryan Smith (NOAA AMOL)
Frank Muller-Karger (University of South Florida)
Digna Rueda-Roa (University of South Florida)
Chuanmin Hu (University of South Florida)
Mengqiu Wang (University of South Florida)
Maureen Brooks (University of Maryland Center for Environmental Science)
Lewis Gramer (NOAA AMOL and University of Miami)
Francisco Werner (NOAA Fisheries)

Can phytoplankton help us determine ocean iron bioavailability?

Posted by mmaheigan 
· Wednesday, March 11th, 2020 

Iron (Fe) is a key element to sustaining life, but it is present at extremely low concentrations in seawater. This scarcity limits phytoplankton growth in large swaths of the global ocean, with implications for marine food webs and carbon cycling. The acquisition of Fe by phytoplankton is an important process that mediates the movement of carbon to the deep ocean and across trophic levels. It is a challenge to evaluate the ability of marine phytoplankton to obtain Fe from seawater since it is bound by a variety of poorly defined organic complexes.

Figure 1: Schematic representation of the reactions governing dissolved Fe (dFe) bioavailability to phytoplankton (a) Bioavailability of dFe in seawater collected from various basins and depth and probed with different iron-limited phytoplankton species under dim laboratory light and sunlight (b) (See paper for further details on samples and species)

A recent study in The ISME Journal proposes a new approach for evaluating seawater dissolved Fe (dFe) bioavailability based on its uptake rate constant by Fe-limited cultured phytoplankton. The authors collected samples from distinct regions across the global ocean, measured the properties of organic complexation, loaded these complexes with a radioactive Fe isotope, and then tracked the internalization rates from these forms to a diverse set of Fe-limited phytoplankton species. Regardless of origin, all of the phytoplankton acquired natural organic complexes at similar rates (accounting for cell surface area). This confirms that multiple Fe-limited phytoplankton species can be used to probe dFe bioavailability in seawater. Among water types, dFe bioavailability varied by ~4-fold and did not clearly correlate with Fe concentrations or any of the measured Fe speciation parameters. This new approach provides a novel way to determine Fe bioavailability in samples from across the oceans and enables modeling of in situ Fe uptake rates by phytoplankton based simply on measured Fe concentrations.

 

Authors:
Yeala Shaked (Hebrew University of Jerusalem)
Kristen N. Buck (University of South Florida)
Travis Mellett (University of South Florida)
Maria. T. Maldonado (University of British Columbia)

 

Untangling microbial evolution in the oceans: How the interaction of biological and physical timescales determine marine microbial evolutionary strategies

Posted by mmaheigan 
· Wednesday, March 11th, 2020 

Marine microbes are the engines of global biogeochemical cycling in the oceans. They are responsible for approximately half of all photosynthesis on the planet and drive the ‘biological pump’, which transfers organic carbon from the surface to the deep ocean. As such, it is important to determine how marine microbes will adapt and evolve in response to a changing climate in order to understand and predict how the global carbon cycle may change. However, we still lack a mechanistic understanding of how and how fast microorganisms adapt to stressful and changing environments. This is particularly challenging due to the diversity of organisms that live in the ocean and the dynamic nature of the oceans themselves—microbes are at the whim of ocean currents and so get transported large distances fairly quickly. For the first time, a new study published in PNAS provides a prediction on the controls of microbial evolutionary timescales in the oceans.  The authors hypothesize that there is a trade-off for marine microbes between ability to evolve to long-term changes versus respond to shorter term variability. Their results suggest that marine microbes commonly experience conditions that favor a short-term strategy at the cost of long-term adaptation. This trade-off determines evolutionary timescales and provides a foundation for understanding distributions of microbial traits and biogeochemistry.

Illustration of trade-off in evolutionary strategy as a function of environmental variability. Trajectories where individuals perceived high environmental variability (a & b) exhibited low selective pressure for any one environment but allowed for high environmental tracking. Trajectories where individuals perceived a more stable environment (c&d) had high selective pressure for ’new environments’ (high probability of a selective sweep) but these individuals exhibited poor environmental tracking. Panels a and c show trajectories where selective sweeps were highly probable (red), likely (yellow), and had a low probability (grey). Panels b and d show the estimated persistence of non-genetic modifications necessary for environmental tracking, where grey indicates unrealistically long timescales.

 

Authors:
Nathan G. Walworth (University of Southern California)
Emily J. Zakem (University of Southern California)
John P. Dunne (Geophysical Fluid Dynamics Laboratory, NOAA)
Sinéad Collins (University of Edinburgh)
Naomi M. Levine (University of Southern California)

Hurricane-driven surge of labile carbon into the deep North Atlantic Ocean

Posted by mmaheigan 
· Thursday, February 27th, 2020 

Tropical cyclones (hurricanes and typhoons) are the most extreme episodic weather event affecting subtropical and temperate oceans. Hurricanes generate intense surface cooling and vertical mixing in the upper ocean, resulting in nutrient upwelling into the photic zone and episodic phytoplankton blooms. However, their influence on the deep ocean is unknown.

Figure 1. (a) Particulate organic carbon (POC) flux and percentage of the total mass flux (yellow) (top panel); fluxes (middle panel) and POC-normalized concentrations (bottom panel) of diagnostic lipid biomarkers for phytoplankton-derived and labile material, zooplankton, bacteria, and other (see legend); (b) Lipid concentrations (left panel) and POC-normalized concentrations (right panel) of diagnostic lipid biomarkers for the same sources as in (a) (see legend) measured two weeks after Nicole’s passage (25-29 Oct. 2016). Shown for reference are total lipid concentration profiles in April 2015 (dark gray, typical post spring bloom conditions) and Nov 2015 (light gray, typical minimum production period).

In October 2016, Category 3 Hurricane Nicole passed over the Bermuda time-series site (Oceanic Flux Program (OFP) and Bermuda Atlantic Time-Series site (BATS)) in the oligotrophic NW Atlantic Ocean. In a recent study published in Geophysical Research Letters, authors synthesized multidisciplinary data from hydrographic and phytoplankton measurements and lipid composition of sinking and suspended particles collected from OFP and BATS, respectively, after Hurricane Nicole in 2016. After the hurricane passed, particulate fluxes of lipids diagnostic of fresh phytodetritus, zooplankton, and microbial biomass increased by 30-300% at 1500 m depth and 30-800% at 3200 m depth (Figure 1a). In addition, mesopelagic suspended particles were enriched in phytodetrital material, as well as zooplankton- and bacteria-sourced lipids (Figure 1b), indicating particle disaggregation and a deep-water ecosystem response.

These results suggest that carbon export and biogeochemical cycles may be impacted by climate-induced changes in hurricane frequency, intensity, and tracks, and, underscore the sensitivity of deep ocean ecosystems to climate perturbations.

Authors:
Rut Pedrosa-Pamies (Marine Biological Laboratory)
Maureen H. Conte (Bermuda Institute of Ocean Science and Marine Biological Laboratory)
JC Weber (Marine Biological Laboratory)
Rodney Johnson (Bermuda Institute of Ocean Science)

Nitrate enrichment may threaten coastal wetland carbon storage

Posted by mmaheigan 
· Thursday, February 27th, 2020 

With their high primary productivity and slow decomposition in anoxic soils, salt marshes and other coastal wetlands can store carbon more efficiently than terrestrial uplands. These wetlands also provide critical ecosystem services such as interception of land-derived nutrients before they can enter the coastal ocean. Therefore, it is important to understand how anthropogenic supplies of nitrate (NO3–) affect marsh sustainability and carbon storage.

In marsh sediment studies, the most common form of experimental nitrogen enrichment uses pelletized fertilizer composed of ammonium, urea, or other organic based fertilizers. Authors of a recent study published in Global Change Biology hypothesized that when nutrients were instead added in the form of nitrate (NO3–), the most common form of nitrogen enrichment in coastal waters, it would stimulate microbial decomposition of organic matter by serving as an electron acceptor for microbial respiration in anoxic salt marsh sediments. Furthermore, decomposition would vary with sediment depth, with decreased decomposition at greater depths, where less biologically available organic matter accumulated over time.

Figure 1: DIC production as a proxy for microbial respiration in salt marsh sediments from three distinct depth horizons (shallow 0-5cm, mid 10-15cm, deep 20-25cm) that span a range of biological availability. The addition of NO3- (green) stimulated DIC production relative to unenriched sediments, regardless of sediment depth. All samples were run under anoxic conditions (without the presence of oxygen), closely matching that of normal salt marsh sediments.

Surprisingly, NO3– addition stimulated decomposition of organic matter at all depths, with the highest decomposition rates in the surface sediments. This suggests that there is a pool of “NO3–-labile” organic matter in marsh sediments that microbes can decompose under high-NO3– conditions that would otherwise remain stable. As human activities continue to enrich our coastal waters with NO3– through agricultural runoff, septic systems, and other pathways, it could inadvertently decrease coastal wetlands’ carbon storage capacity, with negative consequences for both blue carbon offsets and marsh sustainability in the face of sea level rise.

 

Authors:
Jennifer Bowen (Northeastern University)
Ashley Bulseco (MBL/WHOI)
Anne Giblin (MBL)

Krillin’ it with poop: Highlighting the importance of Antarctic krill in ocean carbon and nutrient cycling

Posted by mmaheigan 
· Tuesday, February 4th, 2020 

Scientists have long known the role of Antarctic krill (Euphausia superba) in Southern Ocean ecosystems. Evidence is gathering about krill’s biogeochemical importance through releasing millions of faecal pellets in swarms and stimulating primary production through nutrient excretion. Here, we explore and synthesise the known impacts that this highly abundant and rather large species has on the environment. Krill exemplify how metazoa can play a dominant role in shaping ocean biogeochemistry, thus providing additional motivation for protecting certain harvested species.

Figure 1: The ecological roles of krill in Southern Ocean biogeochemical cycles, including releasing faecal pellets, excreting nutrients whilst grazing, and larval krill migrating throughout the water column, shedding exoskeletons, and feeding on the seabed.

A review published in Nature Communications uncovers at least 13 possible pathways by which Antarctic krill either influence the carbon sink or release fertilizing nutrients (Figure 1). Their large size (up to 7 cm) and swarming nature (millions of krill aggregate) enable krill to strongly impact ocean biogeochemistry. Swarms release large numbers of faecal pellets, overwhelming detritivores and resulting in a large sink of faecal carbon. Krill may physically mix nutrients from the deep ocean and become a decades-long carbon store in whale biomass. Antarctic krill larvae, which live near the sea-ice, undergo deeper diel vertical migrations compared to adult Antarctic krill (400 m vs. 200 m), so any carbon respired or faecal pellets released by larvae could remain in the deep ocean longer than those released by adult krill at a shallower depth; the larval krill contribution to carbon export has not been quantified. Furthermore, it is currently unknown how many krill larvae are removed from the Antarctic krill fishery as by-catch. Perhaps the biggest challenge in constraining the role of krill (adult and larvae) in biogeochemical cycles is our limited capacity to quantify the abundance and biomass of Antarctic krill, since shipboard sampling methods (nets or acoustics) have limited spatial and temporal coverage. Ultimately, the Southern Ocean is an important physical AND biological sink of carbon, and we must consider the role krill and other animals have in this cycle.

Figure 2: Processes in the biological carbon pump including the sinking of dead phytoplankton aggregates, zooplankton, krill and fish faecal pellets and dead animals. Microbial remineralisation is depicted through the return of particulate organic carbon to dissolved organic carbon (DOC) and eventually carbon dioxide.

Authors:
Emma Cavan (Imperial College London and University of Tasmania)
Anna Belcher (British Antarctic Survey)
Angus Atkinson (Plymouth Marine Laboratory)
Simeon Hill (British Antarctic Survey)
So Kawaguchi (Australian Antarctic Division)
Stacey McCormack (University of Tasmania)
Bettina Meyer (Alfred Wegener Institute for Polar and Marine Research and University of Oldenburg)
Stephen Nicol (University of Tasmania)
Lavenia Ratnarajah (University of Liverpool)
Katrin Schmidt (University of Plymouth)
Deborah Steinberg (Virginia Institute of Marine Science)
Geraint Tarling (British Antarctic Survey)
Philip Boyd (University of Tasmania and Antarctic Climate and Ecosystems Cooperative Research Centre)

Diatoms commit iron piracy with stolen bacterial gene

Posted by mmaheigan 
· Tuesday, February 4th, 2020 

Since diatoms carry out much of the primary production in iron-limited marine environments, constraining the details of how these phytoplankton acquire the iron they need is paramount to our understanding of biogeochemical cycles of iron-depleted high-nutrient low-chlorophyll (HNLC) regions. The proteins involved in this process are largely unknown, but McQuaid et al. (2018) scientists described a carbonate-dependent uptake protein that enables diatoms to access inorganic iron dissolved in seawater. As increasing atmospheric CO2 results in decreased seawater carbonate ion concentrations, this iron uptake strategy may have an uncertain future. In a recent study published in PNAS, authors used CRISPR technology to characterize a parallel uptake system that requires no carbonate and is therefore not impacted by ocean acidification.

This system targets an organically complexed form of iron (siderophores, molecules that bind and transport iron in microorganisms) that is only produced by co-occurring microbes. Two genes are required to convert siderophores from a potent toxicant to an essential nutrient. One of these (FBP1) is a receptor that was horizontally acquired from siderophore-producing bacteria. The other (FRE2) is a eukaryotic reductase that facilitates the dissociation of Fe-siderophore complexes.

Figure caption: (A) Growth curves of diatom cultures ( • = WT, ◇ = ΔFBP1, ☐ = ΔFRE2) in low iron media. (B) Growth in same media with siderophores added. (C) Diatoms under 1000x magnification, brightfield. (D) mCherry-FBP1. (E) Plastid autofluorescence. (F) YFP-FRE2. (G) Phylogenetic tree of FBP1 and related homologs.

Are diatoms really stealing siderophores from hapless bacteria? The true nature of this interaction is unknown and may at times be mutualistic. For example, when iron availability limits the carbon supply to a microbial community, heterotrophic bacteria may benefit from using siderophores to divert iron to diatom companions. Further work is needed to understand the true ecological basis for this interaction, but these results suggest that as long as diatoms and bacteria co-occur, iron limitation in marine ecosystems will not be exacerbated by ocean acidification.

Authors:
Tyler Coale (Scripps Institution of Oceanography, J.Craig Venter Institute)
Mark Moosburner (Scripps Institution of Oceanography, J.Craig Venter Institute)
Aleš Horák (Biology Centre CAS, Institute of Parasitology, University of South Bohemia)
Miroslav Oborník (Biology Centre CAS, Institute of Parasitology, University of South Bohemia)
Katherine Barbeau (Scripps Institution of Oceanography)
Andrew Allen (Scripps Institution of Oceanography, J.Craig Venter Institute)

Also see joint post on the GEOTRACES website

Ocean iron fertilization commercialization: bad idea; Continued research: good idea

Posted by mmaheigan 
· Tuesday, January 21st, 2020 

Amidst little to no substantive global action on climate change mitigation, individuals and companies have been exploring various geoengineering strategies as a possible alternative. Ocean Iron Fertilization (OIF) is an ocean-based strategy that involves the addition of iron to the sunlit upper layers of the ocean in iron-limited areas such as the Southern Ocean in order to stimulate marine phytoplankton growth and increase drawdown of carbon dioxide. Authors of a recent technology review in the Journal of Science Policy & Governance argue that a market-based approach to Southern Ocean iron fertilization is not advisable, but recommends continued research into the matter.

Figure 1: Idealized schematic of carbon cycling and the biological in a natural High Nutrient Low Chlorophyll Region (HNLC) and an iron fertilized HLNC. White arrows represent carbon transport. The addition of iron may dramatically increase surface biomass but only a small fraction of that is additional sequestered in the deep ocean or the sea floor.

This study begins by asking whether or not fertilizing the Southern Ocean could actually create a sustainable carbon sink. A comprehensive literature review revealed that while iron fertilization almost certainly will stimulate new primary production, what is much less clear is how much of that carbon will sink out of the surface ocean and be sequestered long-term. Given the scientific uncertainty, it would be ill-advised to commercialize iron fertilization in emerging carbon offset markets. In addition to concerns about the fundamental feasibility and potential adverse side effect of fertilization, the study argues that any market framework would be corrupted by perverse incentives created by the inability to establish reliable baselines or to accurately and comprehensively document and quantify the effects of fertilization, thus making it impossible to provide fair and consistent compensation. Nevertheless, recent history shows that fertilization activity on unregulated voluntary offset markets motivated by the promise of an easy fix can and will continue to emerge. This study concludes that continued research is needed to constrain the public perception and clarify the reality of an iron bullet.

Author:
Tyler Rohr (MIT/WHOI, currently at US Department of Energy)

The past, present, and future of the ocean carbon cycle: A global data product with regional insights

Posted by mmaheigan 
· Tuesday, January 21st, 2020 

A new study published in Scientific Reports debuts a global data product of ocean acidification (OA) and buffer capacity from the beginning of the Industrial Revolution to the end of the century (1750-2100 C.E.). To develop this product, the authors linked one of the richest observational carbon dioxide (CO2) data products (6th version of the Surface Ocean CO2 Atlas, 1991-2018, ~23 million observations) with temporal trends modeled at individual locations in the global ocean. By linking the modeled pH trends to the observed modern pH distribution, the climatology benefits from recent improvements in both model design and observational data coverage, and is likely to provide more accurate regional OA trajectories than the model output alone. The authors also show that air-sea CO2 disequilibrium is the dominant mode of spatial variability for surface pH, and discuss why pH and calcium carbonate mineral saturation states (Omega), two important metrics for OA, show contrasting spatial variability. They discover that sea surface temperature (SST) imposes two large but cancelling effects on surface ocean pH and Omega, i.e., the effects of SST on (a) chemical speciation of the carbonic system; and (b) air-sea exchange of CO2 and the subsequent DIC/TA ratio of the seawater. These two processes act in concert for Omega but oppose each other for pH. As a result, while Omega is markedly lower in the colder polar regions than in the warmer subtropical and tropical regions, surface ocean pH shows little latitudinal variation.

Figure 1. Spatial distribution of global surface ocean pHT (total hydrogen scale, annually averaged) in past (1770), present (2000) and future (2100) under the IPCC RCP8.5 scenario.

This data product, which extends from the pre-Industrial era (1750 C.E.) to the end of this century under historical atmospheric CO2 concentrations (pre-2005) and the Representative Concentrations Pathways (post-2005) of the Intergovernmental Panel on Climate Change (IPCC)’s 5th Assessment Report, may be helpful to policy-makers and managers who are developing regional adaptation strategies for ocean acidification.

The published paper is available here: https://www.nature.com/articles/s41598-019-55039-4

The data product is available here: https://www.nodc.noaa.gov/oads/data/0206289.xml

 

Authors:
Li-Qing Jiang (University of Maryland and NOAA NCEI)
Brendan Carter (NOAA PMEL and University of Washington JISAO)
Richard Feely (NOAA PMEL)
Siv Lauvset, Are Olsen (University of Bergen and Bjerknes Centre for Climate Research, Norway)

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater AT Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms AUVs bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation clouds CO2 CO3 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea NPP nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.