Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for New OCB Research – Page 8

New Data Standard for Oceanographic Research

Posted by mmaheigan 
· Friday, February 18th, 2022 

Effective data management is paramount in oceanographic research. The ocean is a global system, and research to understand regional and global oceanographic processes often involves compiling cruise-based data from different laboratories and expeditions.

The new international data standard covers column header abbreviations, quality control flags, missing value indicators, and standardized calculation of numerous parameters. Released alongside this paper are newly developed tools to calculate some oceanographic properties, and recommendations for dissociation constants of the seawater carbon system calculations. In addition, the use of “content” instead of “concentration” is recommended for mass-based properties.

Image of CTD alongside ship held by two people with ropes

The column header abbreviation standards presented here are based on the 30-year-old Exchange format of the World Ocean Circulation Experiment (WOCE) Hydrographic Program (Joyce and Corry, 1994; Swift and Diggs, 2008) with updates and refinements by the Climate and Ocean-Variability, Predictability, and Change (CLIVAR) and the Carbon Hydrographic Data Office (CCHDO) of the Scripps Institution of Oceanography. This format has been used as a data file standard for discrete chemical oceanographic observations for several decades.

The new international data standards will facilitate data sharing, quality control, and synthesis efforts to promote climate change and ocean acidification research at regional to global scales. This product is a significant step forward in terms of (a) creating common data standards for the international oceanographic research community to streamline data management, quality control, and data product developments; and (b) bringing the subject matter expertise from the research community to the data management world.

 

Authors (partial, see full list on publication)
Li-Qing Jiang (Univ Maryland, NOAA/NCEI)
Denis Pierrot (NOAA/AOML)
Rik Wanninkhof (NOAA/AOML)
Richard A. Feely (NOAA/PMEL)
Bronte Tilbrook (CSIRO Oceans and Atmosphere and Australian Antarctic Program Partnership)
Simone Alin (NOAA/AOML)
Leticia Barbero (Univ Miami; NOAA/AOML),
Robert H. Byrne (Univ South Florida),
Brendan R. Carter (Univ Washington, NOAA/PMEL)
Andrew G. Dickson (Scripps Institution of Oceanography)
Jean-Pierre Gattuso (CNRS, Laboratoire d’Océanographie de Villefranche, Sorbonne Univ; Institute for Sustainable Development and International Relations, Sciences Po, France)
Dana Greeley (NOAA/PMEL)
Mario Hoppema (Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Sciences Po,)
Matthew P. Humphreys (NIOZ Royal Netherlands Institute for Sea Research, Netherlands)
Johannes Karstensen (GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany)
et al.

 

Seagrass is not a silver bullet for climate change

Posted by mmaheigan 
· Friday, January 21st, 2022 

Coastal management actions aimed at protecting or restoring seagrass meadows are often assumed to have the collateral benefit of removing large amounts of carbon dioxide from the atmosphere to combat climate change. Be aware, however: not all seagrass meadows are alike. Under certain conditions, some release more carbon dioxide than they absorb and are net carbon sources to the atmosphere. This is now shown in a new study by an international team of researchers, published in the scientific journal Science Advances. This study combined direct eddy covariance measurements of air-water gas exchange with geochemical approaches to build a comprehensive carbon budget for a tropical seagrass meadow in south Florida. The process of ecosystem calcification released far more CO2 to the atmosphere than was buried in sediments as “Blue Carbon.” This study questions the reliability of Blue Carbon approaches towards net CO2 sequestration in tropical waters. But still unclear is how applicable these results are to the global scale, and what fraction of tropical seagrass meadows are net sources, rather than sinks, of CO2 to the atmosphere.

Figure 1 : Diel trend in CO2 flux presented as discrete 30-min measurements during the study period (black circles) and annual mean fluxes for the year surrounding the study period, binned in 2-hour intervals [colored circles (x ± SD)].

Authors
Bryce R. Van Dam (Helmholtz-Zentrum Hereon)
Mary A. Zeller (Leibniz Institute for Baltic Sea Research)
Christian Lopes (Florida International University)
Ashley R. Smyth (University of Florida)
Michael E. Böttcher  (Leibniz Institute for Baltic Sea Research)
Christopher L. Osburn (North Carolina State University)
Tristan Zimmerman (Helmholtz-Zentrum Hereon)
Daniel Pröfrock (Helmholtz-Zentrum Hereon)
James W. Fourqurean (Florida International University)
Helmuth Thomas  (Helmholtz-Zentrum Hereon)

Aircraft reveal a surprisingly strong Southern Ocean carbon sink

Posted by mmaheigan 
· Friday, December 17th, 2021 

The Southern Ocean is indeed a significant carbon sink—absorbing a large amount of the excess carbon dioxide emitted into the atmosphere by human activities—according to a newly published study led by the National Center for Atmospheric Research (NCAR).

The findings provide clarity about the role the icy waters surrounding Antarctica play in buffering the impact of increasing greenhouse gas emissions, after research published in recent years suggested the Southern Ocean might be less of a sink than previously thought. The authors makes use of observations from research aircraft flown during three field projects over nearly a decade, as well as a collection of atmospheric models, to determine that the Southern Ocean takes up significantly more carbon than it releases.

You can’t fool the atmosphere. While measurements taken from the ocean surface and from land are important, they are too sparse to provide a reliable picture of air-sea carbon flux. The atmosphere, however, can integrate fluxes over large expanses. Airborne measurements reveal critical patterns in the global carbon cycle, a drawdown of CO2 in the lower atmosphere over the Southern Ocean surface in summer, indicating carbon uptake by the ocean.


Figure 1: Observed patterns in atmospheric CO2 over the Southern Ocean during the ORCAS airborne campaign (Jan-Feb 2016). Colors show the observed CO2 dry air mole fraction relative to the average observed within the 295–305 K potential temperature range south of 45°S on each campaign; contour lines show the observed potential temperature.

 

Authors:
M. C. Long (National Center for Atmospheric Research)
B. B. Stephens (National Center for Atmospheric Research)
K. McKain (University of Colorado, Boulder/NOAA)
C. Sweeney (NOAA)
R. F. Keeling (Scripps Institution of Oceanography)
E. A. Kort (University of Michigan)
E. J. Morgan (Scripps Institution of Oceanography)
J. D. Bent (National Center for Atmospheric Research)
N. Chandra (JAMSTEC)
F. Chevallier (Laboratoire des Sciences du Climat et de l’Environnement)
R. Commane (Columbia University)
B. C. Daube (Harvard University)
P. B. Krummel (CSIRO)
Z. Loh (CSIRO)
I. T. Luijkx (Wageningen University)
D. Munro (University of Colorado, Boulder/NOAA)
P. Patra (JAMSTEC)
W. Peters (Wageningen University)
M. Ramonet (Laboratoire des Sciences du Climat et de l’Environnement)
C. Rödenbeck (Max Planck Institute for Biogeochemistry)
A. Stavert (CSIRO)
P. Tans (NOAA)
S. C. Wofsy (Harvard University)

Eddies oxygenate the upper equatorial Pacific

Posted by mmaheigan 
· Friday, December 17th, 2021 

As the ocean warms, the future of the tropical Pacific Oxygen Minimum Zones (OMZs) remains highly uncertain, in part due to incomplete understanding of processes and poor model representation of how mesoscale circulation impacts ocean biogeochemistry. To help address these gaps, a recent paper explored how mesoscale eddies modulate dissolved oxygen distributions and variability, with a particular focus on the upper northern equatorial Pacific where eddy kinetic energy is intensified.

Figure 1: Sea Surface Temperature (SST) and oxygen concentrations at 155 m depth in an eddy resolving simulation of CESM. Tropical Instability Vortices (TIVs) are outlined by cusp-like features in SST and oxygenated cores at depth.

The authors used an eddy resolving model simulation of the Community Earth System Model (CESM) and Lagrangian particle analysis to simulate the impacts of mesoscale eddies on oxygen distribution and variability in the upper equatorial Pacific Tropical Instability Vortices (TIVs)—large eddies associated with Tropical Instability Waves—lead to a substantial oxygenation of the upper equatorial Pacific. TIVs are generated from boreal summer through winter, and contribute to the seasonal oxygenation of the northern equatorial Pacific, exhibited as a seasonal shoaling and deepening of the northern eastern ­tropical Pacific OMZ. The processes governing the simulated TIV oxygenation of the upper equatorial Pacific are dominated by physical eddy advection and mixing, while biogeochemical feedbacks (e.g. enhanced microbial consumption of oxygen in the eddy cores) play a minor role. These simulated TIV oxygenation effects stand in contrast to the deoxygenation effects of Anticyclonic Mode Water Eddies recently observed and simulated along Eastern Boundary Upwelling Systems, suggesting a diverse and complex influence of mesoscale circulation on ocean biogeochemistry.

TIV influence on oxygen is highly relevant to predicting the variability and future of ecosystem habitable space, informing the source of model biases in this region, and guiding the current revamping of the Tropical Pacific Observing System, and should be explored in future observational campaigns.

 

Authors: 
Yassir Eddebbar (Scripps UCSD)
Aneesh Subramanian (Colorado University, Boulder)
Daniel Whitt (NASA Ames Research Center)
Matthew Long (National Center for Atmospheric Research)
Ariane Verdy  (Scripps UCSD)
Matthew Mazloff  (Scripps UCSD)
Mark Merrifield  (Scripps UCSD)

Ocean Acidification drives shifts in global stoichiometry and carbon export efficiency

Posted by mmaheigan 
· Friday, November 19th, 2021 

Marine food webs and biogeochemical cycles react sensitively to increases in carbon dioxide (CO2) and associated ocean acidification, but the effects are far more complex than previously thought. A comprehensive study published in Nature Climate Change by a team of researchers from GEOMAR dove deep into the impacts of ocean acidification on marine biota and biogeochemical cycling. The authors combined data from five large-scale field experiments with natural plankton communities to investigate how carbon cycling and export respond to ocean acidification.

The biological pump is a key mechanism in transferring carbon to the deep ocean and contributes significantly to the oceans’ function as a carbon sink. The carbon-to-nitrogen ratio of sinking biogenic particles, here termed (C:Nexport), determines the amount of carbon that is transported from the euphotic zone to the ocean interior per unit nutrient, thereby controlling the efficiency of the biological pump. The authors demonstrate for the first time that ocean acidification can change the elemental composition of organic matter export, thereby potentially altering the biological pump and carbon sequestration in a future ocean (Figure 1).

Figure 1: Until now, the common assumption is that changes in C:N (and biogeochemistry, in general) are mainly driven by phytoplankton. In a series of in situ mesocosm experiments in different biomes (left), Taucher et al., (2020) found distinct impacts of ocean acidification on the C:N ratio of sinking organic matter (middle). By linking these observations to analysis of plankton community composition, the authors found a key role of heterotrophic processes in controlling the response of C:N to OA, particularly by altering the quality and carbon content of sinking organic matter within the biological pump (right).

Surprisingly, the observed responses were highly variable: C:Nexport increased or decreased significantly with increasing CO2, depending on the composition of species and the structure of the food web. The authors found that heterotrophic processes driven by bacteria and zooplankton play a key role in controlling the response of C:Nexport to ocean acidification. This contradicts the widespread paradigm that primary producers are the principal driver of biogeochemical responses to ocean change.

Considering that such diverse pathways, by which planktonic food webs shape the elemental composition and biogeochemical cycling of organic matter, are not represented in state-of-the-art earth system models, these findings also raise the question: Are currently able to predict the large-scale consequences of ocean acidification with any certainty?

 

Authors:
Jan Taucher (GEOMAR, Kiel, Germany)
Tim Boxhammer (GEOMAR, Kiel, Germany)
Lennart T. Bach (University of Tasmania, Hobart, Australia)
Allanah J. Paul (GEOMAR, Kiel, Germany)
Markus Schartau (GEOMAR, Kiel, Germany)
Paul Stange (GEOMAR, Kiel, Germany)
Ulf Riebesell (GEOMAR, Kiel, Germany)

Zooplankton evolutionary rescue is limited by warming and acidification interactions

Posted by mmaheigan 
· Friday, November 19th, 2021 

A key issue facing ocean global change scientists is predicting the fate of biota under the combined effects of ocean warming and acidification (OWA). In addition to the constraints of studying multifactor drivers, predictions are hampered by few evolutionary studies, especially for animal populations. Evolutionary studies are essential to assess the possibility of evolutionary rescue under OWA– the recovery of fitness that prevents population extirpation in the face of environmental change.

Figure 1. Population fitness of the copepod Acartia tonsa vs generation under ambient, AM (18oC, 400 µat pCO2), ocean warming, OW (22oC, 400 µat pCO2), ocean acidification, ocean acidification (18oC, 2000 µat pCO2), and ocean warming and acidification ( 22oC, 2000 µat pCO2). Shown are means and 95% confidence intervals around the mean. The purple line shows that while fitness decreased after the 12th generation, it was still considerably higher than at generation zero. Treatment lines are offset for clarity. No and Nτ (Y-axis legend) represent population size at the beginning and end of a generation (τ), and their ratio is the population fitness. Adapted from Dam et al. (2021).

A paper by Dam et al. published in Nature Climate Change examined the response of a ubiquitous copepod (zooplankter) to OWA for 25 generations to test for evolutionary rescue (Fig. 1). Using a suite of life-history traits, the researchers determined population fitness (the net reproductive rate per generation) under ambient, ocean warming, ocean acidification and OWA conditions. While population fitness decreased drastically under OWA conditions, it recovered in a few generations.  However, after 12 generations under OWA, in contrast to OW or OA, fitness started to decrease again, suggesting incomplete evolutionary rescue driven by antagonistic interactions between warming and acidification. Such interactions add complexity to predictions of the fate of the oceanic biota under climate change.

Limited copepod evolutionary rescue would mean lower fisheries yields under OWA conditions as copepods are a main food source for forage fish. Copepods are also important vectors of the sequestration of CO2 to deeper waters of the ocean. Limited copepod adaptation under OWA could weaken the efficiency of the biological carbon pump.

 

Authors:
Hans G. Dam (University of Connecticut)
James de Mayo (University of Connecticut)
Gihong Park (University of Connecticut)
Lydia Norton (University of Connecticut)
Xuejia He (Jinan University, China)
Michael B. Finiguerra (University of Connecticut)
Hannes Baumann (University of Connecticut)
Reid S. Brennn (University of Vermont)
Melissa H. Pespeni (University of Vermont)

Introducing the Coastal Ocean Data Analysis Product in North America (CODAP-NA)

Posted by mmaheigan 
· Friday, October 22nd, 2021 

Coastal ecosystems are hotspots for commercial and recreational fisheries, and aquaculture industries that are susceptible to change or economic loss due to ocean acidification. These coastal ecosystems support about 90% of the global fisheries yield and 80% of the known marine fish species, and sustain ecosystem services worth $27.7 Trillion globally (a number larger than the U.S. economy). Despite the importance of these areas and economies, internally-consistent data products for water column carbonate and nutrient chemistry data in the coastal ocean—vital to understand and predict changes in these systems—currently do not exist. A recent study published in Earth Syst. Sci. Data compiled and quality controlled discrete sampling-based data—inorganic carbon, oxygen, and nutrient chemistry, and hydrographic parameters collected from the entire North American ocean margins—to create a data product called the Coastal Ocean Data Analysis Product for North America (CODAP-NA) to fill the gap. This effort will promote future OA research, modeling, and data synthesis in critically important coastal regions to help advance the OA adaptation, mitigation, and planning efforts by North American coastal communities; and provides a foothold for future synthesis efforts in the coastal environment.

Figure caption. Sampling stations of the CODAP-NA data product.

 

Authors:
Li-Qing Jiang (University of Maryland; NOAA NCEI)
Richard A. Feely (NOAA PMEL)
Rik Wanninkhof (NOAA AOML)
Dana Greeley (NOAA PMEL)
Leticia Barbero (University of Miami; NOAA AOML)
Simone Alin (NOAA PMEL)
Brendan R. Carter (University of Washington; NOAA PMEL)
Denis Pierrot (NOAA AOML)
Charles Featherstone (NOAA AOML)
James Hooper (University of Miami; NOAA AOML)
Chris Melrose (NOAA NEFSC)
Natalie Monacci (University of Alaska Fairbanks)
Jonathan Sharp (University of Washington; NOAA PMEL)
Shawn Shellito (University of New Hampshire)
Yuan-Yuan Xu (University of Miami; NOAA AOML)
Alex Kozyr (University of Maryland; NOAA NCEI)
Robert H. Byrne (University of South Florida)
Wei-Jun Cai (University of Delaware)
Jessica Cross (NOAA PMEL)
Gregory C. Johnson (NOAA PMEL)
Burke Hales (Oregon State University)
Chris Langdon (University of Miami)
Jeremy Mathis (Georgetown University)
Joe Salisbury (University of New Hampshire)
David W. Townsend (University of Maine)

Contrasting N2O fluxes of source vs. sink in western Arctic Ocean during summer 2017

Posted by mmaheigan 
· Wednesday, October 20th, 2021 

During the western Arctic summer season both physical and biogeochemical features differ with latitude between the Bering Strait and Chukchi Borderland. The southern region (Bering Strait to the Chukchi Shelf) is relatively warm, saline, and eutrophic, due to the intrusion of Pacific waters that bring heat and nutrients in to the western Arctic Ocean (WAO). Because of the Pacific influence, the WAO is one of the most productive stretches of ocean in the world. In contrast, the northern region (Chukchi Borderland to the Canada Basin) is primarily influenced by freshwater originating from sea ice melt and rivers, and is relatively cold, fresh, and oligotrophic. A frontal zone exists between the southern region and northern region (~73°N) due to the distinct physicochemical contrast between mixing Pacific waters and freshwater. These regions support distinct bacterial communities also, making the environmental variations drivers extremely relevant to nitrous oxide (N2O) dynamics.

A recent study published in Scientific Reports examined the role of the WAO as a source and a sink of atmospheric N2O. There are obvious differences in N2O fluxes between southern Chukchi Sea (SC) and northern Chukchi Sea (NC). In the SC (Pacific water characteristics dominate) N2O emissions act as a net source to the atmosphere (Figure 1a). In the NC (freshwater dominant) absorption of atmospheric N2O into the water column suggests that this region acts as a net sink (Figure 1a). The positive fluxes of SC occurred with relatively high sea surface temperature (SST), sea surface salinity (SSS), and biogeochemically-derived N2O production, whereas the negative fluxes of NC were associated with relatively low SST, SSS, and little N2O production. These linear relationships between N2O fluxes and environmental variables suggest that summer WAO N2O fluxes are remarkably sensitive to environmental changes.

Figure 1. (a) Map of the sampling stations using the Ice Breaking R/V Araon during August 2017. The sampling locations were coloured with N2O fluxes (blue to red gradient, see color bar; sink, air → sea (−), and source, sea → air (+). The southern Chukchi Sea (SC) extends from Bering Strait to Chukchi Shelf and the northern Chukchi Sea (NC) extends from Chukchi Borderland and Canada Basin. The frontal zone arises between SC and NC (black dotted line). (b) Illustration showing future changes in the distribution of the WAO N2O flux constrained by the positive feedback scenario of increasing inflow of Pacific waters and rapidly declining sea-ice extent under accelerating Arctic warming.

This study suggests a potential scenario for future WAO changes in terms of accelerating Arctic change. Increasing inflow of the Pacific waters and rapidly declining sea-ice extent are critical. The increasing inflow of warm nutrient-enriched Pacific waters will likely extend the SC N2O source region northward, increasing productivity, and thereby intensifying nitrification. All of which would lead to a strengthening of the WAO’s role as an N2O source. A rapid loss of the sea ice extent could ultimately lead to a sea-ice-free NC, and again, a northward shift, which would result in a diminished role of the NC as an N2O sink (Figure 1b). While improving our understanding of WAO N2O dynamics, this study suggests both a direction for future work and a clear need for a longer-term study to answer questions about both seasonal variations in these dynamics and possible interannual to climatological trends.

 

Authors:
Jang-Mu Heo (Department of Marine Science, Incheon National University)
Sang-Min Eom (Department of Marine Science, Incheon National University)
Alison M. Macdonald (Woods Hole Oceanographic Institution)
Hyo-Ryeon Kim (Department of Marine Science, Incheon National University)
Joo-Eun Yoon (Department of Marine Science, Incheon National University)
Il-Nam Kim (Department of Marine Science, Incheon National University)

The ephemeral and elusive COVID blip in ocean carbon

Posted by mmaheigan 
· Monday, September 20th, 2021 

The global pandemic of the last nearly two years has affected all of us on a daily and long-term basis. Our planet is not exempt from these impacts. Can we see a signal of COVID-related CO2 emissions reductions in the ocean? In a recent study, Lovenduski et al. apply detection and attribution analysis to output from an ensemble of COVID-like simulations of an Earth system model to answer this question. While it is nearly impossible to detect a COVID-related change in ocean pH, the model produces a unique fingerprint in air-sea DpCO2 that is attributable to COVID. Challengingly, the large interannual variability in the climate system  makes this fingerprint  difficult to detect at open ocean buoy sites.

This study highlights the challenges associated with detecting statistically meaningful changes in ocean carbon and acidity following CO2 emissions reductions, and reminds the reader that it may be difficult to observe intentional emissions reductions — such as those that we may enact to meet the Paris Climate Agreement – in the ocean carbon system.

Figure caption: The fingerprint (pink line) of COVID-related CO2 emissions reductions in global-mean surface ocean pH and air-sea DpCO2, as estimated by an ensemble of COVID-like simulations in an Earth system model.   While the pH fingerprint is not particularly exciting, the air-sea DpCO2 fingerprint displays a temporary weakening of the ocean carbon sink in 2021 due to COVID emissions reductions.

 

Authors:
Nikki Lovenduski (University of Colorado Boulder)
Neil Swart (Canadian Centre for Climate Modeling and Analysis)
Adrienne Sutton (NOAA Pacific Marine Environmental Laboratory)
John Fyfe (Canadian Centre for Climate Modeling and Analysis)
Galen McKinley (Columbia University and Lamont Doherty Earth Observatory)
Chris Sabine (University of Hawai’i at Manoa)
Nancy Williams (University of South Florida)

Bacterial fingerprints as a tool for large-scale functional ecology

Posted by Dina Pandya 
· Monday, September 20th, 2021 

Unravelling the relationship between biological diversity and ecosystem functions is a timeless question which dates back to the expeditions of Alexander von Humboldt in the early 1800’. At the base of the marine foodweb, marine prokaryotes are essential for ecosystem functioning. Measuring their biogeography and functional traits therefore merits investigation as alterations in their alpha and beta diversities could lead to changes in the fluxes of oceanic biogeochemical cycles that sustain the life on Earth.

In a new article, published in Nature Communications, the authors used the genetic fingerprint of marine bacteria to predict their metabolic profiles from the ice edge to the equator in the Pacific Ocean. Their research showed that low-cost, high-throughput bacterial marker gene data can be used as a tool for large-scale functional ecology. They tackled five hypotheses and show how biological diversity influences functional diversity, and how these are related to energy production in the ocean. The authors, furthermore, highlight how -  can be nicely integrated with the physical and chemical sampling programs during global ocean monitoring campaigns such as GO-SHIP and GEOTRACES.

Increasing our understanding how bacterial diversity impacts the functional diversity of ecosystems has also broader implications. For example, bacterial fingerprints can help us to improve marine ecosystem monitoring programs, especially in coastal zones and estuaries where the input of nitrogen is predicted to increase. Assessing the changes in the bacterial diversity can also help to assess the environmental footprint of aquaculture cages, which are a source of nutrients such as carbon, nitrogen and phosphorus and have been shown to deteriorate the water quality and life higher up the food chain.

Figure caption: The P15S GO-SHIP line from the ice-edge to the equator along 170o W in the South Pacific Ocean (a). Sea surface temperatures and salinity (b) and a conceptual picture of the functional prokaryotic and microbial-eukaryotic biogeography (c). In winter heterotrophic prokaryotes (blue rods) recycle the organic matter produced in the summer and autumn months in the high nutrient low chlorophyll (HNLC) region of the Southern Ocean (SO). Turbulence and mixing (curved arrows) in the sub-tropical front (STF) results in high primary productivity (PP) driven by phytoplankton rich in chlorophyll-a (green discs). The South Pacific Subtropical Gyre Province (SPSG) is characterized by nutrient co-limitation, low PP, and higher abundances of photosynthetic prokaryotes (yellow circles). The Pacific Equatorial Divergence (PED) is characterized by equatorial upwelling which results in an increase of the N:P ratio in the mixed layer (MLD) relative to the SPSG (d), and results in increased chlorophyll-a concentrations and PP. The MLD is shown as a thick white line. CTD stations (small gray dots), sampling stations for 16S rRNA data (large gray circles) and shotgun metagenome samples (yellow stars) are shown on panel d.

 

Authors:
Eric J. Raes (CSIRO Oceans and Atmosphere, Australia; Dalhousie University, Canada)
Kristen Karsh (CSIRO Oceans and Atmosphere, Australia)
Swan L. S. Sow (CSIRO Oceans and Atmosphere, Australia; University of Tasmania, Hobart; NIOZ Royal Netherlands Institute for Sea Research, The Netherlands)
Martin Ostrowski (University of Technology Sydney, Australia)
Mark V. Brown (The University of Newcastle, Australia)
Jodie van de Kamp (CSIRO Oceans and Atmosphere, Australia)
Rita M. Franco-Santos (University of Tasmania, Australia)
Levente Bodrossy (CSIRO Oceans and Atmosphere, Australia)
Anya M. Waite (Dalhousie University, Canada)

 

Read this related general audience article in The Conversation

Want to read more about the P15S line?

Raes, E. J., Bodrossy, L., Van De Kamp, J., Bissett, A., Ostrowski, M., Brown, M. V., ... & Waite, A. M. (2018). Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean. Proceedings of the National Academy of Sciences, 115(35), E8266-E8275.

Raes, E. J., van de Kamp, J., Bodrossy, L., Fong, A. A., Riekenberg, J., Holmes, B. H., ... & Waite, A. M. (2020). N2 fixation and new insights into nitrification from the ice-edge to the equator in the South Pacific Ocean. Frontiers in Marine Science, 7, 389.

Sow, S. L., Trull, T. W., & Bodrossy, L. (2020). Oceanographic Fronts Shape Phaeocystis Assemblages: A High-Resolution 18S rRNA Gene Survey From the Ice-Edge to the Equator of the South Pacific. Frontiers in microbiology, 11, 1847.

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation CO2 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.