Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for SciHigh Slider-Home – Page 2

Quantifying uncertainties in future projections of Chesapeake Bay Hypoxia

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

Climate change is expected to especially impact coastal zones, worsening deoxygenation in the Chesapeake Bay by reducing oxygen solubility and increasing remineralization rates of organic matter. However, simulated responses of this often fail to account for uncertainties embedded within the application of future climate scenarios.

Recent research published in Biogeosciences and in Scientific Reports sought to tackle multiple sources of uncertainty in future impacts to dissolved oxygen levels by simulating multiple climate scenarios within the Chesapeake Bay region using a coupled hydrodynamic-biogeochemical model. In Hinson et al. (2023), researchers showed that a multitude of climate scenarios projected a slight increase in hypoxia levels due solely to watershed impacts, although the choice of global earth system model, downscaling methodology, and watershed model equally contributed to the relative uncertainty in future hypoxia estimates. In Hinson et al. (2024), researchers also found that the application of climate change scenario forcings itself can have an outsized impact on Chesapeake Bay hypoxia projections. Despite using the same inputs for a set of three experiments (continuous, time slice, and delta), the more commonly applied delta method projected an increase in levels of hypoxia nearly double that of the other experiments. The findings demonstrate the importance of ecosystem model memory, and fundamental limitations of the delta approach in capturing long-term changes to both the watershed and estuary. Together these multiple sources of uncertainty interact in unanticipated ways to alter estimates of future discharge and nutrient loadings to the coastal environment.

Figure 1: Chesapeake Bay hypoxia is sensitive to multiple sources of uncertainty related to the type of climate projection applied and the effect of management actions. Percent contribution to uncertainty from Earth System Model (ESM), downscaling methodology (DSC), and watershed model (WSM) for estimates of (a) freshwater streamflow, (b) organic nitrogen loading, (c) nitrate loading, and (d) change in annual hypoxic volume (ΔAHV). (e) Summary of all experiment results for ΔAHV, expressed as a cumulative distribution function. The Multi-Factor experiment (blue line) used a combination of multiple ESMs, DSCs, and WSMs, the All ESMs experiment (pink line) simulated 20 ESMs while holding the DSC and WSM constant, and the Management experiment (green line) only simulated 5 ESMs with a single DSC and WSM but incorporated reductions in nutrient inputs to the watershed. The vertical dashed black line marks no change in AHV.

Understanding the relative sources of uncertainty and impacts of environmental management actions can improve our confidence in mitigating negative climate impacts on coastal ecosystems. Better quantifying contributions of model uncertainty, that is often unaccounted for in projections, can constrain the range of outcomes and improve confidence in future simulations for environmental managers.

Figure 2: A schematic of differences between the Continuous and Delta experiments. In the Delta experiment a combination of altered distributions in future precipitation and changes to long-term soil nitrogen stores eventually result in increased levels of hypoxia (right panel).

 

Authors
Kyle E. Hinson (Virginia Institute of Marine Science, William & Mary)
Marjorie A. M. Friedrichs (Virginia Institute of Marine Science, William & Mary)
Raymond G. Najjar (The Pennsylvania State University)
Maria Herrmann (The Pennsylvania State University)
Zihao Bian (Auburn University)
Gopal Bhatt (The Pennsylvania State University, USEPA Chesapeake Bay Program Office)
Pierre St-Laurent (Virginia Institute of Marine Science, William & Mary)
Hanqin Tian (Boston College)
Gary Shenk (USGS Virginia/West Virginia Water Science Center)

Swirling Currents: How Ocean Mesoscale Affects Air-Sea CO2 Exchange

Posted by mmaheigan 
· Friday, October 25th, 2024 

Due to a sparsity of in‐situ observations and the computational burden of eddy‐resolving global simulations, there has been little analysis on how mesoscale processes (e.g., eddies, meanders—lateral scales of 10s to 100s km) influence air‐sea CO2 fluxes from a global perspective. Recently, it became computationally feasible to implement global eddy‐resolving [O (10) km] ocean biogeochemical models. Many questions related to the influence of mesoscale motions on CO2 fluxes remain open, including whether ocean eddies serve as hotspots for CO2 sink or source in specific dynamic regions.

A recent study in Geophysical Research Letters investigated the contribution of ocean mesoscale variability to air-sea CO2 fluxes by analyzing the CO2 flux anomaly within the mesoscale band using a coarse-graining approach in a global eddy-resolving biogeochemical simulation. We found that in eddy-rich mid-latitude regions, ocean mesoscale variability can contribute to over 30% of the total CO2 flux variability. The cumulative net CO2 flux associated with mesoscale motions is on the order of 105 tC per year. The global pattern of cumulative mesoscale-related CO2 flux exhibits significant spatial heterogeneity, with the highest values in western boundary currents, the Antarctic Circumpolar Current, and the equatorial Pacific. The local distribution of cumulative mesoscale-related CO2 flux displays zonal bands alternate between positive (a net source) and negative (a net sink) due to the meandering nature of ocean mesoscale currents, which is related to local relative vorticity and the background cross-stream pCO2 gradient.

Figure caption. Mesoscale (<nominal 2 degree) contribution to air‐sea CO2 flux (F<2°CO2)in the model. (a)–(d) Monthly time series of F<2°CO2 (black lines) and cumulative F<2°CO2 (green/red solid lines) in four locations marked in (e). Dashed lines are the least squares regression of cumulative flux for the period 1982–2000; slopes are indicated in the bottom left; (e) Blue colors imply a CO₂ sink, and red colors represent a source. The figure shows the global distribution of the regressed slopes of cumulative F<2°CO2. Units are converted from mol m-2 per year to kg of CO2 per year using the atomic mass of CO2. This figure shows significant spatial heterogeneity of mesoscale-modulated CO2 flux, showing contributions to both CO₂ sources and sinks across different regions of the ocean, with a magnitude on the order of 105 tC per year.

 

Authors
Yiming Guo (Yale University; now at Woods Hole Oceanographic Institution)
Mary-Louise Timmermans (Yale University)

How tiny teeth and their prey shape ocean ecosystems

Posted by mmaheigan 
· Friday, October 25th, 2024 

It has long been suggested that diatoms, microscopic algae enclosed in silica-shells, developed these structures to defend against predators like copepods, small crustaceans that graze diatoms. Copepods evolved silica-lined teeth presumably to counteract this. But actual evidence for how this predator-prey relationship may drive natural selection and evolutionary change has been lacking.

Figure caption: Left: Copepod teeth may suffer damage when feeding on thick-shelled diatoms. The red arrows indicate damage to the copepod tooth, cracks or missing setae. When fed a large diatom, the row of spinose cusps was damaged in all analyzed teeth. Scale bar = 10 µm. Right: A Temora longicornis (ca. 750 µm) copepod tethered to a human hair using super glue, allowing for the capture of high-speed videography to quantify the fraction of cells that eaten or discarded by the copepod. The hair was kindly provided by the first author’s wife.

A recent publication in Proceedings of the National Academy of Sciences U.S.A. revealed a fascinating dynamic: Copepods that feed on diatoms may suffer significant damage to their teeth, causing them to become more selective eaters. The wear and tear on the copepod teeth were particularly pronounced when copepods consumed thick-shelled diatoms compared to “softer” prey like a dinoflagellate. By glueing copepods to human hair and filming them with a high-speed video camera, the authors found that copepods with damaged teeth were more likely to reject diatoms with thick shells than those with thin shells as prey. Shell thickness varies among and within diatom species and some can respond to copepod presence by increasing shell thickness. A thicker shell, however, may come at a cost to the cell in terms of reduced growth rate or increased sinking speed.  This suggests that the evolutionary “arms race” between diatoms and copepods plays a crucial role in shaping and sustaining the diversity of these species.

Diatoms and copepods are important organisms in global biogeochemical cycles and hence understanding this microscopic interaction can help predict shifts in marine ecosystems, potentially affecting nutrient cycles and food webs that support fisheries.

 

Authors
Fredrik Ryderheim (Technical University of Denmark/University of Copenhagen)
Jørgen Olesen (University of Copenhagen)
Thomas Kiørboe (Technical University of Denmark)

 

Twitter
@fryderheim (Fredrik Ryderheim)
@OlesenCrust (Jørgen Olesen)
@Thomaskiorboe (Thomas Kiørboe)
@OceanLifeCentre (FR, TK group at DTU)
@NHM_Denmark (Natural History Museum of Denmark, JO employer)

Fast-sinking salp and fish detritus impacts OMZ size and ocean biogeochemical cycles

Posted by mmaheigan 
· Thursday, September 12th, 2024 

Marine fishes and filter-feeding gelatinous zooplankton such as salps and pyrosomes generate detritus in the form of poop and dead carcasses, which sink ~10 times faster than other oceanic detritus. This detritus is hypothesized to have a disproportionally large impact on the marine biological pump as it sequesters carbon and nutrients deeper in the water column. Until now, global models had not considered these fluxes, thus, their impacts on ocean biogeochemical cycles were not well understood.

A recent study in Geophysical Research Letters investigated the sensitivity of deep ocean carbon, oxygen, and nutrient cycles to fast-sinking detritus from filter-feeding gelatinous zooplankton (pelagic tunicates) and fishes, using a modified version of the NOAA-GFDL ocean biogeochemical model COBALT (“GZ-COBALT”). We found the fast-sinking detritus decreased surface productivity and export, while increasing transfer efficiency and sequestration at depth. Ocean oxygen minimum zones (OMZs) also decreased in size: fast-sinking detritus triggered less remineralization, particularly in the mid-depths, resulting in less oxygen consumption and a reduced expansion of OMZs.

Figure caption: Flux of detrital carbon at various depths (A, B, C), shows that incorporating fast-sinking detritus counter-intuitively decreases carbon export from the surface while increasing sequestration at depth. Particulate organic carbon (POC) export flux at (A) 100 m, (B) 1,000 m and (C) seafloor (mgC/m2/d), shows (left) the control simulation with no fast-sinking detritus, (center) the experiment with fast-sinking fish and gelatinous zooplankton detritus, and (right) the differences between the control and fast-sinking detritus simulation. (D) Total ocean volume over the 300-year simulation at the suboxic (O2 ≤ 5 mmol/m3) level, shows the simulation with fast-sinking particulate organic carbon (red) had lower suboxia than the control (black). Large hypoxic and suboxic zones are a common model bias; these results suggest that fast-sinking detritus may be one biogeochemical mechanism to reduce the expansion of these low oxygen zones.

Past observations have shown that fast-sinking, highly reactive detritus reaching the seafloor can fuel significant benthic consumption and respiration. On a global scale, we suggest that the increased fluxes to the seafloor in the model can be supported by observational constraints of seafloor oxygen consumption, suggesting that these processes could be realistically incorporated into future generations of Earth System Models.

 

Authors
Jessica Y. Luo (NOAA GFDL)
Charles A. Stock (NOAA GFDL)
John P. Dunne (NOAA GFDL)
Grace K. Saba (Rutgers University)
Lauren Cook (Rutgers University)

The fate of the 21st century marine carbon cycle could hinge on zooplankton’s appetite

Posted by mmaheigan 
· Wednesday, September 11th, 2024 

Both climate change and the efforts to abate have the potential to reshape phytoplankton community composition, globally. Shallower mixed layers in a warming ocean and many marine CO2 removal (CDR) technologies will shift the balance of light, nutrients, and carbonate chemistry, benefiting certain species over others. We must understand how such shifts could ripple through the marine carbon cycle and modify the ocean carbon reservoir. Two new publications in Geophysical Research Letters and Global Biogeochemical Cycles highlight an often over looked pathway in this response: The appetite of zooplankton.

We have long known that the appetite of zooplankton—i.e. the half-saturation concertation for grazing—varies dramatically. This variability is largely based on laboratory incubations of specific species. An open-ocean perspective has been much more elusive. Using two independent inverse modelling approaches, both studies reached the same conclusion: Even at the community level, the appetite of zooplankton in the open-ocean is incredibly diverse.

Moreover, variability in zooplankton appetites maps well onto the biogeography of phytoplankton species. As these phytoplankton niches evolve, the composition of the zooplankton will likely follow. To help understand the impact of this response on the biological pump, we compared two models, one with only two types of zooplankton, and another with an unlimited amount, each with different appetites, all individually tuned to their unique environment. Including more realistic diversity reduced the strength of the biological pump by 1 PgC yr-1.

Figure Caption. A) Variability in the abundance and characteristic composition of phytoplankton drives B) large differences in the associated appetite and characteristic composition of zooplankton in two independent inverse modelling studies. C) When more realistic diversity in the appetite of zooplankton is simulated in models, the strength of biological pump is dramatically reduced.

That is the same order as the most optimistic scenarios for ocean iron fertilization. This means that when simulating the efficacy of many CDR scenarios, the bias introduced by insufficiently resolved zooplankton diversity could be just as large as the signal. Moving forward, it is imperative to improve the representation of zooplankton in Earth System Models to understand how the marine carbon sink will respond to inadvertent and deliberate perturbations.

Related article in The Conversation: https://theconversation.com/marine-co-removal-technologies-could-depend-on-the-appetite-of-the-oceans-tiniest-animals-227156

Authors (GRL):
Tyler Rohr (The University of Tasmania; Australian Antarctic Program Partnership)
Anthony Richardson (The University of Queensland; CSIRO)
Andrew Lenton (CSIRO)
Matthew Chamberlain (CSIRO)
Elizabeth Shadwick (Australian Antarctic Program Partnership; CSIRO)

Authors (GBC):
Sophie Meyjes (Cambridge)
Colleen Petrick (Scripps Institute of Oceanography)
Tyler Rohr (The University of Tasmania; Australian Antarctic Program Partnership)
B.B. Cael (NOC)
Ali Mashayek (Cambridge)

 

Plankton plummet in one of the world’s longest time series

Posted by mmaheigan 
· Friday, August 2nd, 2024 

Phytoplankton are the main primary producers in the ocean and fuel marine food webs. Long-term shifts in phytoplankton biomass are useful for understanding the context of short-term changes and for examining the relationships between climate indices and phytoplankton dynamics. However, current monitoring programs often offer too short a time frame to disentangle these relationships.

In a recent publication in the Proceedings of the National Academy of Sciences, data from the Narragansett Bay, RI Long-Term Plankton Time Series, were used to examine long-term trends in Chlorophyll a, a proxy for phytoplankton biomass. The magnitude of the winter-spring bloom and of annual phytoplankton biomass declined by about half from 1968 to 2019 (Figure 1). The winter–spring bloom, which fuels coastal ecosystems, occurred about five days earlier each decade. The authors found these changes were associated with multiple environmental factors impacted by climate change, including warming surface seawater temperatures and reduced nutrient concentrations.

Figure 1: In addition to long-term trends, the authors observed that phytoplankton biomass in Narragansett Bay was highly variable similar to other coastal and open ocean time series they analyzed. A high degree of variation in phytoplankton biomass means that it can take decades to identify a trend from the noise in a dataset. This highlights the need to sustain ecosystem monitoring of phytoplankton and other environmental factors for the long term globally. These results provide the first step to understanding the effect of climate change and anthropogenic inputs at the base of the food web, which will inform future research to determine how this change implicates the rest of the ecosystem.

 

A major secondary component of this study was the digitization of much of the historical dataset from 1959-1999, which required the lead author to obtain, organize, and digitally record 30 years of physical data from a storage closet and harmonize it with digitized data from 2000-2019. All biological and environmental data from this time series are now publicly available at BCO-DMO for scientists, managers, and educators to explore and utilize.

 

Authors:
Patricia S. Thibodeau (University of New England) @PattyPlankton
Gavino Puggioni (University of Rhode Island)
Jacob Strock (University of Rhode Island)
David G. Borkman (Rhode Island Department of Environmental Management, Office of Water Resources–Shellfish)
Tatiana A. Rynearson (University of Rhode Island) @RynearsonLab

A New Insight into Ocean Carbon Sequestration

Posted by mmaheigan 
· Thursday, August 1st, 2024 

How does the microbial carbon pump (MCP) redefine our understanding of oceanic carbon sequestration and climate change mitigation?

A recent study published in Nature Reviews Microbiology reviews the pivotal role of the microbial carbon pump (MCP) a novel concept differing from the known mechanisms for carbon sequestration in the ocean, the Biological Carbon Pump (BCP), the Carbonate Counter Pump (CCP), and the Solubility Carbon Pump (SCP) (Figure 1).

Figure 1 Illustration of the microbial carbon pump (MCP) and other carbon pumps, outlining their relationships and modes of carbon transformation and sequestration in the ocean.

Unlike the others, the MCP operates independently of physical processes like vertical transportation and sedimentation; it is driven by microbial processes at every depth in the water column, and functions as a two-way pump of carbon cycle, thus playing a unique role in regulation of climate change. The MCP’s role in transforming dissolved organic carbon (DOC) from labile states into refractory states, reveals the “enigma” of how the oceanic refractory DOC (RDOC) reservoir is formed. This paper also illustrates the dual functions of the MCP-regulated oceanic carbon reservoir over geological timescales, which may help explain the “eccentricity puzzle” in the Milankovitch climate theory.

The spatial and temporal distribution of RDOC is influenced by various microbial processes and the paper details how the MCP responds to environmental changes across environmental gradients and the entire water column. We also revealed the impacts of climate change on microbial activities and carbon sequestration efficiency, which in turn affect carbon cycles across different oceanic regions and depths. We explored the synergistic effects of the MCP with BCP, CCP, and SCP (BCMS), which could have great potentials in geoengineering. Applications of BCMS approach make it possible for international program on Ocean Negative Carbon Emissions (ONCE) practice for both of carbon sink enhancement and ecosystem sustainable development, such as scenarios of sea-farming areas and wastewater treatment plants, avoiding the potential risks of traditional geoengineering approaches.

Understanding the MCP processes and effects is essential for accurate assessment of the ocean’s capacity to mitigate climate change, and how the MCP can support potential modes of geoengineering. The findings and implications are of profound reference for policymakers, environmental stakeholders, and funding agencies for strategies to fight climate changes, leverage more effective preservation and restoration of ecosystems.

 

Authors:
Nianzhi Jiao (Xiamen University)
Tingwei Luo (Xiamen University)
Quanrui Chen (Xiamen University)
Zhao Zhao (Xiamen University)
Xilin Xiao (Xiamen University)
Jihua Liu (Shandong University)
Zhimin Jian (Tongji University)
Shucheng Xie (China University of Geosciences)
Helmuth Thomas (Helmholtz-Zentrum Hereon)
Gerhard J. Herndl (University of Vienna)
Ronald Benner (University of South Carolina)
Micheal Gonsior (University of Maryland)
Feng Chen (University of Maryland)
Wei-Jun Cai (University of Delaware)
Carol Robinson (University of East Anglia)

Out of sight, out of mind: extreme signals of ocean acidification hidden in the mesopelagic

Posted by mmaheigan 
· Wednesday, July 31st, 2024 
https://www.us-ocb.org/wp-content/uploads/sites/43/2024/07/Fassbender-Subsurface_OA.mp4

Ocean Acidification (OA), caused by the air-to-sea transfer of anthropogenic carbon (Cant), is intuitively thought to be a surface-intensified process, which makes sense because the concentration of Cant is greatest near the ocean surface and decreases with depth. But this intuition is not correct for multiple metrics of OA that are less commonly studied below the sea surface, including the partial pressure of carbon dioxide gas (pCO2) and the hydrogen ion concentration ([H+]).

We braved the quiescent seas of a three-dimensionally mapped data product (Lauvest et al., 2016) hunting for signals of OA in the deep. Just like anyone who seeks moss in Seattle, we were successful. We identified massive interior ocean changes in pCO2 and [H+] caused by the accumulation of Cant (up to the year 2002). Such signals were not clearly identifiable for the more commonly studied pH and aragonite saturation state OA metrics. Extreme pCO2 and [H+] changes induced by smaller amounts of Cant at depth are caused by greater sensitivities of these parameters to carbon addition in subsurface waters that are weakly buffered because they have experienced significant organic matter respiration. This results in mesopelagic pCO2 (and [H+]) changes that are more than twice as large as overlying surface water changes throughout large expanses of the ocean, outpacing the atmospheric pCO2 change that drives OA itself (ΔpCO2 Air of ~92 μatm in year 2002).

Yikes! What should we investigate next? Well, it may be that the re-emergence of high-pCO2, mesopelagic waters at the sea surface could cause elevated CO2 evasion rates and reduced carbon storage efficiency in regions where waters do not have time to fully equilibrate with the atmosphere before subduction. It is also possible that the elevated signal-to-noise ratio associated with subsurface pCO2 and [H+] changes could prove useful in the assessment of environmental impacts associated with some marine carbon dioxide removal strategies. More work is needed to characterize the evolution of mesopelagic OA metric changes beyond the year 2002, and what they could mean for ocean ecosystems that are already under pressure from a variety of anthropogenic stressors.

Authors:
Andrea J. Fassbender (NOAA Pacific Marine Environmental Laboratory)
Brendan R. Carter (Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington)
Jonathan D. Sharp (Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington)
Yibin Huang (Xiamen University)
Mar C. Arroyo (University of California Santa Cruz)
Hartmut Frenzel (Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington)

Publication: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023GB007843

 

An unexpected shift to a later phytoplankton bloom in the West Antarctic Peninsula

Posted by mmaheigan 
· Wednesday, May 29th, 2024 

Polar regions are changing: warming, losing sea ice, and experiencing shifts in the phenology of seasonal events. Global models predict that phytoplankton blooms will start earlier in these warming polar environments. What we don’t know is will this be true for all high-latitude regions? Is the timing of phytoplankton growing season moving earlier in the West Antarctic Peninsula as this region experiences climate change?

The authors of a recent paper published in Marine Ecology Progress Series used 25 years of satellite ocean color data to track shifts in bloom phenology—the timing of recurring seasonal events. Contrary to predictions, the results show that the spring bloom start date is shifting later over time. Figure 1 shows that in the waters experiencing seasonal sea ice, from 1997 to 2022, the start and peak date of the phytoplankton growing season are shifting later. However, there is no overall decline in total annual chlorophyll-a, because in the fall (February-April) chlorophyll-a concentrations are increasing over time.

The most likely driver of earlier spring bloom start dates is increased wind mixing. Spring (October-December) wind speed has been increasing over time concurrent with delayed bloom start dates. In an ecosystem with less sea ice than previous decades, more open water exposed to increased wind speed may mix phytoplankton more deeply in spring, delaying the bloom until the onset of summer stratification.

Even though global climate models predict bloom timing will shift earlier with climate change, this may not be the case in specific polar regions like the West Antarctic Peninsula.  Later bloom timing could impact surface ocean carbon uptake, phytoplankton community composition, and ecosystem health. If the timing and composition of blooms is changing, that shifts will affect the food quantity and quality available to krill and higher trophic level organisms.

Author
Jessie Turner (University of Connecticut) @jessiesturner

Figure 1: In recent years the timing of the annual phytoplankton bloom in the Mid Shelf region of the West Antarctic Peninsula has shifted: satellite-derived chlorophyll-a concentration in recent years (pink line) shows a significant delayed bloom start date compared to past years (blue line).

Inorganic carbon outwelling as important blue carbon sink

Posted by mmaheigan 
· Wednesday, May 29th, 2024 

Blue carbon ecosystems—mangroves, saltmarshes, and seagrass meadows—carbon sequestration powerhouses that can help us mitigate climate change. For many years, our community has focused on studying and quantifying organic carbon storage in the soils of these ecosystems and crediting it as Blue Carbon in carbon markets.

A new paper in Nature Communications reveals that much of that carbon sequestered by mangroves and saltmarshes is actually exported as inorganic carbon to the ocean. Inorganic carbon export dominates blue carbon budgets and rivals or even surpasses carbon stored in soils. Inorganic carbon exports had an alkalinity: dissolved inorganic carbon ratio of 0.8 ± 0.2, impacting the carbonate system and carbon cycling along the coast. Most of the inorganic carbon is exported as bicarbonate which stays permanently dissolved in the ocean and is therefore a permanent atmospheric carbon sink. When we ignore inorganic carbon export, we highly underestimate the potential of mangroves and saltmarshes to mitigate climate change. Consequently, inorganic carbon export should be integrated into blue carbon frameworks to adequately inform carbon markets, which encourage landowners to restore and preserve mangrove and saltmarsh ecosystems.

Authors
Gloria M. S. Reithmaier (University of Gothenburg) Twitter: @GReithmaier@Barefoot_Lab
Alex Cabral (University of Gothenburg)
Anirban Akhand (Hong Kong University of Science and Technology)
Matthew J. Bogard (University of Lethbridge)
Alberto V. Borges (University of Liège)
Steven Bouillon (KU Leuven)
David J. Burdige (Old Dominion University)
Mitchel Call (Southern Cross University)
Nengwang Chen (Xiamen University)
Xiaogang Chen (Westlake University)
Luiz C. Cotovicz Jr (Leibniz Institute for Baltic Sea Research)
Meagan J. Eagle (U.S. Geological Survey)
Erik Kristensen (University of Southern Denmark)
Kevin D. Kroeger (U.S. Geological Survey)
Zeyang Lu (Xiamen University)
Damien T. Maher (Southern Cross University)
Lucas J. Pérez-Lloréns (University of Cádiz)
Raghab Ray (University of Tokyo)
Pierre Taillardat (National University of Singapore)
Joseph J. Tamborski (Old Dominion University)
Rob C. Upstill-Goddard (Newcastle University)
Faming Wang (Chinese Academy of Sciences)
Zhaohui Aleck Wang (Woods Hole Oceanographic Institution)
Kai Xiao (Southern University of Science and Technology)
Yvonne Y. Y. Yau (University of Gothenburg)
Isaac R. Santos (University of Gothenburg)

 

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater AT Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms AUVs bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation clouds CO2 CO3 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea NPP nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.