Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for modeling

The ocean is shifting toward phosphorus limitation

Posted by mmaheigan 
· Friday, February 28th, 2025 

Biogeochemical models predict that ocean warming is weakening the vertical transport of nutrients to the upper ocean, with severe implications for marine productivity. However, nutrient concentrations across the ocean surface often fall below detection limits, making it difficult to observe long-term changes.

In a recent study in PNAS, we analyzed over 30,000 nitrate and phosphate depth profiles observed between 1972 and 2022 to quantify nutricline depths, where nutrient concentrations are reliably detected. These depths accurately represent nutrient supplies in a global model, allowing us to assess long-term trends. Over the past five decades, upper ocean phosphate has mostly declined worldwide, while nitrate has remained mostly stable. Model simulations support that this difference is likely due to nitrogen fixation replenishing upper ocean nitrate, whereas phosphate has no equivalent biological source.

Figure caption: Five decades of global and regional nutricline depth data reveal declining phosphate-to-nitrate trends. Nutricline depths were defined based on threshold concentrations of 3 μmol kg−1 nitrate (TNO3) and 3/16 μmol kg−1 phosphate (TPO4). Site-specific trends were quantified for each unique pair of geographic coordinates where sufficient data was available (TNO3, n = 1,859 sites; TPO4, n = 1,641 sites). Shown are 95% confidence intervals (CI95%) calculated for each median trend by generating 10,000 bootstrap samples. The curves over the histograms depict the kernel densities. The sets of error bars from top to bottom are the interquartile ranges of TNO3 and TPO4 from a monthly climatology, the total observations, and the total observations with added measurement error.

These findings suggest that the ocean is becoming more limited in phosphorus. This decline could make phytoplankton less nutritious for marine animals. Fish larvae growth rates correlate with phosphorus availability in the ecosystem, so intensifying phosphorus limitation may greatly impact fisheries worldwide.

 

Authors
Skylar Gerace (University of California, Irvine)
Jun Yu (University of California, Irvine)
Keith Moore (University of California, Irvine)
Adam Martiny (University of California, Irvine)

@UCI_OCEANS

Persistent bottom trawling impairs seafloor carbon sequestration

Posted by mmaheigan 
· Friday, February 28th, 2025 

Bottom trawling, a fishing method that uses heavy nets to catch animals that live on and in the seafloor, could release a large amount of organic carbon from seafloor into the water, that metabolizes to CO2 then outgasses to the atmosphere. The magnitude of this indirect emission has been heavily debated, with estimates spanning from negligibly small to global climate relevant. Thus, a lack of reliable data and insufficient understanding of the process hinders management of bottom trawling for climate protection.

We set out to solve this problem in two steps. First, we analyzed a large field dataset containing more than 2000 sediment samples from one of the most intensely trawled regions globally, the North Sea. We identified a trawling-induced carbon reduction trend in the data, but only in samples taken in persistently intensively trawled areas with multi-year averaged swept area ratio larger than 1 yr-1. In less intensely trawled areas, there was no clear effect. In a second step, we applied numerical modelling to understand the processes behind the observed change (Fig. 1). Our model results suggest that bottom trawling annually releases one million tonnes of CO2 in the North Sea and 30 million tonnes globally. Along with sediment resuspension in the wake of the trawls, the main cause for altered sedimentary carbon storage is the depletion of macrofauna, whose locomotion and burrowing effectively buries freshly deposited carbon into deeper sediment layers. By contrast, macrofauna respiration is reduced owing to trawling-caused mortality, partly offsetting the organic carbon loss. Following a cessation of trawling, the simulated benthic biomass can recover in a few years, but the sediment carbon stock would take several decades to be restored to its natural state.

Figure 1. (a) Benthic–pelagic coupling in a natural system. (b) Processes involved in bottom trawling. (c) Model-estimated source and sink terms of organic carbon in surface sediments in the No-trawling (solid fill, n = 67 annual values for 1950–2016) and trawling (pattern fill, n = 67 ensemble-averaged values for 1950–2016) scenarios of the North Sea. © 2024, Zhang, W. et al., CC BY 4.0.

Marine conservation strategies traditionally favor hard bottoms, such as reefs, that are biologically diverse but accumulate limited amounts of organic carbon. Our results indicate that carbon in muddy sediments is more susceptible to trawling impacts than carbon in sand and point out a need to safeguard muddy habitats for climate protection. Our methods and results might be used in the context of marine spatial planning policies to gauge the potential benefits of limiting or ending bottom trawling within protected areas.

 

Zhang, W., Porz, L., Yilmaz, R. et al. Long-term carbon storage in shelf sea sediments reduced by intensive bottom trawling. Nat. Geosci. 17, 1268–1276 (2024). https://doi.org/10.1038/s41561-024-01581-4

Authors
Wenyan Zhang (Hereon)
Lucas Porz (Hereon)
Rümeysa Yilmaz (Hereon)
Klaus Wallmann (GEOMAR)
Timo Spiegel (GEOMAR)
Andreas Neumann (Hereon)
Moritz Holtappels (AWI)
Sabine Kasten (AWI)
Jannis Kuhlmann (BUND)
Nadja Ziebarth (BUND)
Bettina Taylor (BUND)
Ha Thi Minh Ho-Hagemann (Hereon)
Frank-Detlef Bockelmann (Hereon)
Ute Daewel (Hereon)
Lea Bernhardt (HWWI)
Corinna Schrum (Hereon)

Quantifying uncertainties in future projections of Chesapeake Bay Hypoxia

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

Climate change is expected to especially impact coastal zones, worsening deoxygenation in the Chesapeake Bay by reducing oxygen solubility and increasing remineralization rates of organic matter. However, simulated responses of this often fail to account for uncertainties embedded within the application of future climate scenarios.

Recent research published in Biogeosciences and in Scientific Reports sought to tackle multiple sources of uncertainty in future impacts to dissolved oxygen levels by simulating multiple climate scenarios within the Chesapeake Bay region using a coupled hydrodynamic-biogeochemical model. In Hinson et al. (2023), researchers showed that a multitude of climate scenarios projected a slight increase in hypoxia levels due solely to watershed impacts, although the choice of global earth system model, downscaling methodology, and watershed model equally contributed to the relative uncertainty in future hypoxia estimates. In Hinson et al. (2024), researchers also found that the application of climate change scenario forcings itself can have an outsized impact on Chesapeake Bay hypoxia projections. Despite using the same inputs for a set of three experiments (continuous, time slice, and delta), the more commonly applied delta method projected an increase in levels of hypoxia nearly double that of the other experiments. The findings demonstrate the importance of ecosystem model memory, and fundamental limitations of the delta approach in capturing long-term changes to both the watershed and estuary. Together these multiple sources of uncertainty interact in unanticipated ways to alter estimates of future discharge and nutrient loadings to the coastal environment.

Figure 1: Chesapeake Bay hypoxia is sensitive to multiple sources of uncertainty related to the type of climate projection applied and the effect of management actions. Percent contribution to uncertainty from Earth System Model (ESM), downscaling methodology (DSC), and watershed model (WSM) for estimates of (a) freshwater streamflow, (b) organic nitrogen loading, (c) nitrate loading, and (d) change in annual hypoxic volume (ΔAHV). (e) Summary of all experiment results for ΔAHV, expressed as a cumulative distribution function. The Multi-Factor experiment (blue line) used a combination of multiple ESMs, DSCs, and WSMs, the All ESMs experiment (pink line) simulated 20 ESMs while holding the DSC and WSM constant, and the Management experiment (green line) only simulated 5 ESMs with a single DSC and WSM but incorporated reductions in nutrient inputs to the watershed. The vertical dashed black line marks no change in AHV.

Understanding the relative sources of uncertainty and impacts of environmental management actions can improve our confidence in mitigating negative climate impacts on coastal ecosystems. Better quantifying contributions of model uncertainty, that is often unaccounted for in projections, can constrain the range of outcomes and improve confidence in future simulations for environmental managers.

Figure 2: A schematic of differences between the Continuous and Delta experiments. In the Delta experiment a combination of altered distributions in future precipitation and changes to long-term soil nitrogen stores eventually result in increased levels of hypoxia (right panel).

 

Authors
Kyle E. Hinson (Virginia Institute of Marine Science, William & Mary)
Marjorie A. M. Friedrichs (Virginia Institute of Marine Science, William & Mary)
Raymond G. Najjar (The Pennsylvania State University)
Maria Herrmann (The Pennsylvania State University)
Zihao Bian (Auburn University)
Gopal Bhatt (The Pennsylvania State University, USEPA Chesapeake Bay Program Office)
Pierre St-Laurent (Virginia Institute of Marine Science, William & Mary)
Hanqin Tian (Boston College)
Gary Shenk (USGS Virginia/West Virginia Water Science Center)

Swirling Currents: How Ocean Mesoscale Affects Air-Sea CO2 Exchange

Posted by mmaheigan 
· Friday, October 25th, 2024 

Due to a sparsity of in‐situ observations and the computational burden of eddy‐resolving global simulations, there has been little analysis on how mesoscale processes (e.g., eddies, meanders—lateral scales of 10s to 100s km) influence air‐sea CO2 fluxes from a global perspective. Recently, it became computationally feasible to implement global eddy‐resolving [O (10) km] ocean biogeochemical models. Many questions related to the influence of mesoscale motions on CO2 fluxes remain open, including whether ocean eddies serve as hotspots for CO2 sink or source in specific dynamic regions.

A recent study in Geophysical Research Letters investigated the contribution of ocean mesoscale variability to air-sea CO2 fluxes by analyzing the CO2 flux anomaly within the mesoscale band using a coarse-graining approach in a global eddy-resolving biogeochemical simulation. We found that in eddy-rich mid-latitude regions, ocean mesoscale variability can contribute to over 30% of the total CO2 flux variability. The cumulative net CO2 flux associated with mesoscale motions is on the order of 105 tC per year. The global pattern of cumulative mesoscale-related CO2 flux exhibits significant spatial heterogeneity, with the highest values in western boundary currents, the Antarctic Circumpolar Current, and the equatorial Pacific. The local distribution of cumulative mesoscale-related CO2 flux displays zonal bands alternate between positive (a net source) and negative (a net sink) due to the meandering nature of ocean mesoscale currents, which is related to local relative vorticity and the background cross-stream pCO2 gradient.

Figure caption. Mesoscale (<nominal 2 degree) contribution to air‐sea CO2 flux (F<2°CO2)in the model. (a)–(d) Monthly time series of F<2°CO2 (black lines) and cumulative F<2°CO2 (green/red solid lines) in four locations marked in (e). Dashed lines are the least squares regression of cumulative flux for the period 1982–2000; slopes are indicated in the bottom left; (e) Blue colors imply a CO₂ sink, and red colors represent a source. The figure shows the global distribution of the regressed slopes of cumulative F<2°CO2. Units are converted from mol m-2 per year to kg of CO2 per year using the atomic mass of CO2. This figure shows significant spatial heterogeneity of mesoscale-modulated CO2 flux, showing contributions to both CO₂ sources and sinks across different regions of the ocean, with a magnitude on the order of 105 tC per year.

 

Authors
Yiming Guo (Yale University; now at Woods Hole Oceanographic Institution)
Mary-Louise Timmermans (Yale University)

Turbulent Mixing: A Dominant Source of Oxygen in the Upper Equatorial Pacific

Posted by mmaheigan 
· Tuesday, March 12th, 2024 

What balances oxygen removal in the equatorial Pacific? For a long time, oxygen in the eastern and central tropical Pacific was assumed to be mainly supplied by the large-scale advection of remotely ventilated waters via the equatorial current system and meridional circulation. A recent study used an eddy-resolving simulation of a global ocean model to show that turbulent mixing and its regulation by mesoscale eddies play a critical role in balancing oxygen removal (by consumption and upwelling) in the upper thermocline. Deeper in the water column, mean advection by the zonal currents and meridional circulation dominates. This mixing is tightly regulated by tropical instability waves, which intensify the shear between the equatorial currents and enhance the downward turbulent mixing flux of oxygen into the thermocline. Mesoscale phenomena thus play an indirect yet critical role as a local pathway of ventilation in this region. Testing these model-based hypotheses in the real ocean through dedicated field studies and long-term observations is needed to advance our understanding of the observed expansion of the oxygen deficient zones (ODZs) and model their future trajectory in a warmer and more stratified ocean.

Figure: The main processes that set the mean structure of oxygen in the equatorial Pacific are assessed in an eddy resolving simulation of the Community Earth System Model (CESM). Panel a shows the climatological oxygen distribution on the 26.25 isopycnal in CESM. Panels b-e show the contribution of advection by mean circulation and eddies, vertical mixing, and production and consumption. These processes are illustrated in panel f). Figure adapted from Eddebbar et al (2024).

Authors
Yassir A. Eddebbar (Scripps Institution of Oceanography)
Daniel B. Whitt (NASA Ames)
Ariane Verdy, (Scripps Institution of Oceanography)
Matthew R. Mazloff (Scripps Institution of Oceanography)
Aneesh C. Subramanian (CU Boulder)
Matthew C. Long, (National Center for Atmospheric Research)

Ocean iron fertilization may amplify pressures on marine biomass with only a limited climate benefit

Posted by hbenway 
· Friday, January 26th, 2024 

Amidst a heightened focus on the need for both drastic and immediate emissions reductions and carbon dioxide removal to limit warming to 1.5°C (IPCC, 2022), attention is returning to ocean iron fertilization (OIF) as a means of marine carbon dioxide removal (mCDR). First discussed in the early 1990s by John Martin, the concept posits that fertilization of iron-limited marine phytoplankton would lead to enhanced ocean carbon storage via a stimulation of the ocean’s biological carbon pump. However, we lack knowledge about how OIF might operate in concert with an ocean responding to climate change and what the consequences of altered nutrient consumption patterns might be for marine ecosystems, particularly for fisheries in national exclusive economic zones (EEZs). Tagliabue et al. (2023) addressed this in a recent study using state-of-the-art climate, ocean biogeochemical, and ecosystem models under a high-emissions scenario.

The study’s findings suggested that  OIF can contribute at most a few 10s of Pg of mCDR under a high-emissions climate change scenario. This is equivalent to fewer than five years of current emissions and is consistent with earlier modeling assessments. This estimate is based on the modeled representation of carbon and iron cycling and a highly efficient OIF strategy that may be difficult to achieve in practice. Enhanced surface uptake of major nutrients due to OIF also led to a drop in global net primary production, in addition to that due to climate change alone. By then coupling a complex model of upper trophic levels, the projected declines in animal biomass due to climate change were amplified by around a third due to OIF, with the most negative impacts projected to occur in the low latitude EEZs, which are already facing increasing pressures due to climate change.

This work highlights feedbacks within the ocean’s biogeochemical and ecological systems in response to OIF that emerged over large spatial and temporal scales. Associated pressures on marine ecosystems pose major challenges for proposed management and monitoring. Restricting OIF to the highest latitudes of the Southern Ocean might mitigate some of these negative effects, but this only further reduces the minor mCDR benefit, suggesting that OIF may not make a significant contribution.

Authors
A. Tagliabue (Univ. Liverpool)
B. S. Twining (Bigelow Laboratory)
N. Barrier & O. Maury (MARBEC, IRD, IFREMER, CNRS, Université de Montpellier, France)
M. Berger & Laurent Bopp (ENS-LMD, Paris, France)

IPCC. Summary for Policymakers. in Climate Change, 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Shukla, P. R. et al.) (Cambridge University Press, 2022).

New evidence suggests that tiny zooplankton might be the biggest problem with carbon cycling in IPCC climate models

Posted by mmaheigan 
· Friday, December 1st, 2023 

The ocean is the most important sink of anthropogenic emissions and is being considered as a medium to manipulate to draw down even more. Essential in the ocean’s role as a natural carbon-sponge is the net production of organic matter by phytoplankton, some of which sinks and is stored for 100s-1000s of years. Successfully simulating this biological carbon pump is essential for projecting any climate scenario, but it appears that massive uncertainties in the way zooplankton consume phytoplankton are compromising predictions of future climate and our assessment of some strategies to deliberately engineer it.

Figure caption. Grazing pressure is largest source of uncertainty for marine carbon cycling in CMIP6 models a) The global and zonal median winter grazing pressure is shown for all models. b) the coefficient of variation across models (std/mean) is largest for grazing pressure compared 14 major terms in the marine carbon cycle.

A new publication in Communications Earth and Environment explains how our poor understanding of zooplankton biases our best projections of marine carbon sequestration. We compared 11 IPCC climate models and found zooplankton grazing is largest source uncertainty in marine carbon cycling. This uncertainty is over three times larger than that of net primary production and is driven by large differences in different models assumptions about the rate at which zooplankton can consume phytoplankton. Yet, very small changes in zooplankton grazing dynamics (roughly only 5% of the full range used across IPCC models) can increase carbon sequestrations by 2 PgC/yr, which is double the maximum theoretical potential of Southern Ocean Iron Fertilization! Moving forward, to move beyond merely treating zooplankton as a closure term, modelers must look towards novel observational constraints on grazing pressure.

Authors
Tyler Rohr, Anthony J. Richardson, Andrew Lenton, Matthew A. Chamberlain, and Elizabeth H. Shadwick

 

See also the Conversation article

Unveiling the Past and Future of Ocean Acidification: A Novel Data Product covering 10 Global Surface OA Indicators

Posted by mmaheigan 
· Wednesday, August 23rd, 2023 

Accurately predicting future ocean acidification (OA) conditions is crucial for advancing research at regional and global scales, and guiding society’s mitigation and adaptation efforts.

As an update to Jiang et al. 2019, this new model-data fusion product:
1. Utilizes an ensemble of 14 distinct Earth System Models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) along with three recent observational ocean carbon data products –>instead of relying on just one model (i.e., the GFDL-ESM2M) this approach reduces potential projection biases in OA indicators.
2. Eliminates model biases using observational data, and model drift with pre-Industrial controls.
3. Covers 10 OA indicators, an expansion from the usual pH, acidity, and buffer capacity.
4. Incorporates the new Shared Socioeconomic Pathways (SSPs).

The use of the most recent observational datasets and a large Earth System Model ensemble is a major step forward in the projection of future surface ocean OA indicators and provides critical information to guide OA mitigation and adaptation efforts.

Figure X. Temporal changes of global average surface ocean OA indicators as reconstructed and projected from 14 CMIP6 Earth System Models after applying adjustments with observational data: (a) fugacity of carbon dioxide (fCO2), (b) total hydrogen ion content ([H+]total), (c) carbonate ion content ([CO32-]), (d) total dissolved inorganic carbon content (DIC), (e) pH on total scale (pHT), (f) aragonite saturation state (Ωarag), (g) total alkalinity content (TA), (h) Revelle Factor (RF), and (i) calcite saturation state (Ωcalc). The asterisk signs on the left-side y-axes show the values in 1750. The numbers along right-side y-axes, i.e., 1-1.9, 1-2.6, 2-4.5, 3-7.0, and 5-8.5, indicate the shared socioeconomic pathway SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. These are missing from panel g because the trajectories were more dependent on the model than the SSP.

 

Authors
Li-Qing Jiang (University Maryland)
John Dunne (NOAA/Geophysical Fluid Dynamics Laboratory)
Brendan R. Carter (University of Washington)
Jerry F. Tjiputra (NORCE Norwegian Research Centre Bjerknes)
Jens Terhaar (Woods Hole Oceanographic Institution)
Jonathan D. Sharp (University of Washington)
Are Olsen (University of Bergen and Bjerknes Centre for Climate Research)
Simone Alin (NOAA/Pacific Marine Environmental Laboratory)
Dorothee C. E. Bakker (University of East Anglia)
Richard A. Feely (NOAA/Pacific Marine Environmental Laboratory)
Jean-Pierre Gattuso (Sorbonne Université)
Patrick Hogan (NOAA/National Centers for Environmental Information)
Tatiana Ilyina (Max Planck Institute for Meteorology)
Nico Lange (GEOMAR Helmholtz Centre for Ocean Research)
Siv K. Lauvset (NORCE Norwegian Research Centre)
Ernie R. Lewis (Brookhaven National Laboratory)
Tomas Lovato (Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici)
Julien Palmieri (National Oceanography Centre)
Yeray Santana-Falcón (Université de Toulouse)
Jörg Schwinger (NORCE Norwegian Research Centre)
Roland Séférian (Université de Toulouse)
Gary Strand (US National Center for Atmospheric Research)
Neil Swart (Canadian Centre for Climate Modelling and Analysis)
Toste Tanhua (GEOMAR Helmholtz Centre for Ocean Research)
Hiroyuki Tsujino (JMA Meteorological Research Institute)
Rik Wanninkhof (NOAA/Atlantic Oceanographic Meteorological Laboratory)
Michio Watanabe (Japan Agency for Marine-Earth Science and Technology)
Akitomo Yamamoto (Japan Agency for Marine-Earth Science and Technology)
Tilo Ziehn (CSIRO Oceans and Atmosphere)

Twitter:
@JiangLiqing, @JensTerhaar, @jpGattuso, @j_d_sharp, @AreOlsen, @SimoneAlin, @Dorothee_Bakker, @RFeely, @ilitat, @sivlauvset, @yeraysf, @TosteTanhua,

Severe warming = 15% increase in bacterial respiration: Southern Ocean most impacted

Posted by mmaheigan 
· Thursday, March 30th, 2023 

The utilization, respiration, and remineralization of organic matter exported from the ocean surface to its depths are key processes in the ocean carbon cycle. Marine heterotrophic Bacteria play a critical role in these activities. However, most three-dimensional (3-D) coupled physical-biogeochemical models do not explicitly include Bacteria as a state variable. Instead, they rely on parameterization to account for the bacteria’s impact on particle flux attenuation.

A recent study examined how bacteria respond to climate change by employing a 3-D coupled ocean biogeochemical model that incorporates explicit bacterial dynamics. The model (CMCC-ESM2) is a part of the Coupled Model Intercomparison Project Phase 6. The authors first evaluated the reliability of century-scale forecasts (2015-2099) for bacterial stocks and rates in the upper 100 m layer against the compiled measurements from the contemporary period (1988-2011). Next the authors analyzed the predicted trends in bacterial stocks and rates under diverse climate scenarios and explored their association with regional differences in temperature and organic carbon stocks. Three crucial findings were revealed. There is a global-scale decrease in bacterial biomass of 5-10%, with a 3-5% increase in the Southern Ocean (Figure 1). In the Southern Ocean, the rise in semi-labile dissolved organic carbon (DOC) leads to an increase in DOC uptake rates of free-living bacteria; in the northern high and low latitudes, the increase in temperature drives the increase in their DOC uptake rates. Importantly, extreme warming could result in a global increase (up to 15%) and even higher in the Southern Ocean (21% increase) in bacterial respiration (Figure 1), potentially leading to a decline in the biological carbon pump.

This analysis is an unprecedented and early effort to understand the climate-induced changes in bacterial dynamics on a global scale in a systematic manner. This study takes us one step closer to comprehending how bacteria influence the functioning of the biological carbon pump and the distribution of organic carbon pools between surface and deep layers, especially their response to climate change.

Figure 1. Global projections of bacterial carbon stocks and rates during the baseline period (1990-2013) and their changes as anomalies under the most-severe climate change scenario (i.e., SSP5-8.5) relative to the baseline period (2076-2099). The stocks and rates during the baseline period (a, b, c, g, h, i) and their changes as anomalies under the most-severe climate change scenario (d, e, f, j, k, l). All variables are depth-integrated in the upper 100 m. Solid-line contours as standard deviation from averaging over 1990-2013. Anomalies are 2076-2099 average values relative to 1990-2013 average values. Global bacterial biomass has decreased by 5-10%, with a 3-5% increase in the Southern Ocean. However, extreme warming may increase bacterial respiration worldwide, thereby reducing the efficiency of the biological carbon pump. This study provides an early attempt to understand the response of bacteria to climate change and their impact on the distribution of organic carbon in the ocean.

 

Author
Heather Kim, Woods Hole Oceanographic Institution

Towards using historical oxygen observations to reconstruct the air-sea flux of biological oxygen

Posted by mmaheigan 
· Tuesday, December 13th, 2022 

Dissolved oxygen (O2) is a central observation in oceanography with a long history of relatively high precision measurements and increasing coverage over the 21st century. O2 is a powerful tracer of physical, chemical and biological processes (e.g., photosynthesis and respiration, wave-induced bubbles, mixing, and air-sea diffusion). A commonly used approach to partition the processes controlling the O2 signal relies on concurrent measurements of argon (an inert gas), which has solubility properties similar to O2. However, only a limited fraction of O2 measurements have paired argon measurements.

Figure 1. (a) The newly developed empirical model to parameterize the physical oxygen saturation anomaly (ΔO2[phy]) in order to separate the biological contribution from total oxygen, and (b-c) regional, inter-annual, and decadal variability of air-sea gas flux of biological oxygen (F[O2]bio as) reconstructed from the historical dissolved oxygen record.

A recent study published in the Journal of Global Biogeochemical Cycles presents semi-analytical algorithms to separate the biological and physical O2 oxygen signals from O2 observations. Among the approaches, a machine-learning algorithm using ship-based measurements and historical records of physical parameters from reanalysis products as predictors shows encouraging performance. The researchers leveraged this new algorithm to reconstruct regional, inter-annual, and decadal variability of the air-sea flux of biological oxygen (from historical O2 records.

The long-term objective of this proof-of-concept effort is to estimate from historical oxygen records and a rapidly growing number of O2 measurements on autonomous platforms. In regions where vertical and horizontal mixing is weak, the projected  approximates net community production, providing an independent constraint on the strength of the biological carbon pump.

 

Authors:
Yibin Huang (Duke University)
Rachel Eveleth (Oberlin College)
David (Roo) Nicholson (Woods Hole Oceanographic Institution)
Nicolas Cassar (Duke University)

Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation CO2 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.