Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean-Atmosphere Interaction
      • Ocean Time-series
      • US Biogeochemical-Argo
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • OCB Activity Proposal Solicitation
    • Guidelines for OCB Workshops & Activities
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Author Archive for mmaheigan – Page 5

Quantifying uncertainties in future projections of Chesapeake Bay Hypoxia

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

Climate change is expected to especially impact coastal zones, worsening deoxygenation in the Chesapeake Bay by reducing oxygen solubility and increasing remineralization rates of organic matter. However, simulated responses of this often fail to account for uncertainties embedded within the application of future climate scenarios.

Recent research published in Biogeosciences and in Scientific Reports sought to tackle multiple sources of uncertainty in future impacts to dissolved oxygen levels by simulating multiple climate scenarios within the Chesapeake Bay region using a coupled hydrodynamic-biogeochemical model. In Hinson et al. (2023), researchers showed that a multitude of climate scenarios projected a slight increase in hypoxia levels due solely to watershed impacts, although the choice of global earth system model, downscaling methodology, and watershed model equally contributed to the relative uncertainty in future hypoxia estimates. In Hinson et al. (2024), researchers also found that the application of climate change scenario forcings itself can have an outsized impact on Chesapeake Bay hypoxia projections. Despite using the same inputs for a set of three experiments (continuous, time slice, and delta), the more commonly applied delta method projected an increase in levels of hypoxia nearly double that of the other experiments. The findings demonstrate the importance of ecosystem model memory, and fundamental limitations of the delta approach in capturing long-term changes to both the watershed and estuary. Together these multiple sources of uncertainty interact in unanticipated ways to alter estimates of future discharge and nutrient loadings to the coastal environment.

Figure 1: Chesapeake Bay hypoxia is sensitive to multiple sources of uncertainty related to the type of climate projection applied and the effect of management actions. Percent contribution to uncertainty from Earth System Model (ESM), downscaling methodology (DSC), and watershed model (WSM) for estimates of (a) freshwater streamflow, (b) organic nitrogen loading, (c) nitrate loading, and (d) change in annual hypoxic volume (ΔAHV). (e) Summary of all experiment results for ΔAHV, expressed as a cumulative distribution function. The Multi-Factor experiment (blue line) used a combination of multiple ESMs, DSCs, and WSMs, the All ESMs experiment (pink line) simulated 20 ESMs while holding the DSC and WSM constant, and the Management experiment (green line) only simulated 5 ESMs with a single DSC and WSM but incorporated reductions in nutrient inputs to the watershed. The vertical dashed black line marks no change in AHV.

Understanding the relative sources of uncertainty and impacts of environmental management actions can improve our confidence in mitigating negative climate impacts on coastal ecosystems. Better quantifying contributions of model uncertainty, that is often unaccounted for in projections, can constrain the range of outcomes and improve confidence in future simulations for environmental managers.

Figure 2: A schematic of differences between the Continuous and Delta experiments. In the Delta experiment a combination of altered distributions in future precipitation and changes to long-term soil nitrogen stores eventually result in increased levels of hypoxia (right panel).

 

Authors
Kyle E. Hinson (Virginia Institute of Marine Science, William & Mary)
Marjorie A. M. Friedrichs (Virginia Institute of Marine Science, William & Mary)
Raymond G. Najjar (The Pennsylvania State University)
Maria Herrmann (The Pennsylvania State University)
Zihao Bian (Auburn University)
Gopal Bhatt (The Pennsylvania State University, USEPA Chesapeake Bay Program Office)
Pierre St-Laurent (Virginia Institute of Marine Science, William & Mary)
Hanqin Tian (Boston College)
Gary Shenk (USGS Virginia/West Virginia Water Science Center)

Pacific Northwest mCDR Node

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

PNW Node: Sept 19,
mCDR Law & Policy Symposium

DATE: September 19, 2025, 8:00 a.m.- 5:00 p.m. Pacific

LOCATION: University of Washington CoMotion Idea Lab in Fluke Hall,
4000 NE Mason Rd, Seattle, WA 98195

WHO: This event is of most interest to scientists, regulatory
and legal experts, policymakers (tribal, federal, state and
municipal), NGOs and technology developers, researchers,
coastal constituents and students, but everyone with an
interest in mCDR is welcome.

Read the full description + register by Sept 12

 

Pacific Northwest mCDR Node launch

The Pacific Northwest mCDR Node officially launched with a half-day in-person gathering of 65 invited participants at the Seattle Mountaineers Center on April 17, 2024. The location and timing of this event were chosen to facilitate participation by those traveling to Seattle to attend a separate Carbon Business Council CDR Symposium the following day. In addition to a strong showing from the Washington state mCDR community, Alaska, British Columbia, Oregon, California and Washington DC were also well-represented1.

Pacific Northwest Node co-leads Meg Chadsey (WA Sea Grant), Sara Nawaz (American University) and Kohen Bauer (Ocean Networks Canada) opened the event with an overview of the Ocean Carbon & Biogeochemistry Program’s vision for regional mCDR Nodes, how the Pacific Northwest Node might function in support of that vision (including a proposed Code of Conduct), and suggestions for potential Node objectives and activities. They then set the stage for an engaging and interactive event with a casual ‘speed-introduction’ exercise, to help participants put faces to names and make new connections.

A few invited speakers provided context for the afternoon breakout sessions. David Redford, EPA Office of Wetlands, Oceans & Watersheds, outlined the agency’s current mCDR regulatory framework. Global Ocean Health Programs & Partnerships Director Francesca Hillery shared how Partnerships for Tribal Carbon Solutions is supporting Tribal leadership in carbon removal development and governance. PNNL Earth Scientist Jessica Cross made a compelling pitch for mCDR test beds, and encouraged participants to ‘put a Pacific Northwest spin’ on the breakout session topics: Permitting & Regulations; Social Issues & Engagement; Modeling; and Test Beds.

Breakout Session Summaries

The rest of the program was devoted to facilitated breakout discussions, report-outs and synthesis. The following paragraphs attempt to summarize these rich conversations; detailed notes from each breakout session available on request.

 

Permitting & Regulations

Participants categorized permitting challenges as either tactical (issues with the process itself) or strategic (stemming from data gaps and inadequate scientific and regulatory frameworks). Process length and complexity was cited as the primary tactical barrier, exacerbated by a mismatch between the pace of industry developments and the ability of agencies to respond. The strategic conversation focused on the disconnect between existing laws and fundamental mCDR processes, and the current dearth of basic scientific knowledge needed to develop fit-for-purpose regulations and ecological risk/benefit assessments. Participants noted that better awareness of regulators’ information needs would allow researchers and developers to proactively design their projects to address key issues. They also acknowledged the need for better communication between regulators, developers and communities, which could be improved by the creation of a ‘common local and federal language’.

 

Social Issues & Engagement

As public backlash to some proposed mCDR trials has shown, social engagement can be as critical to the success of a project as R&D, and yet it is often not prioritized. Social scientists need to be included in, and insert themselves in, the mCDR arena, especially conversations about place-based activities (such as regional test beds), as a means to better orient projects to local residents’ priorities, concerns and benefits. The session facilitator noted that for all its novelty, the social challenges facing mCDR are hardly new; we can learn from other ocean sectors like marine energy that have also met resistance. Participants recommended i) investing in mCDR risk research, so the scientific community can be better prepared to address community concerns; ii) learning from–and responding well to–public pushback; and iii) framing mCDR within the broader context of carbon dioxide removal efforts rather than treating it as an isolated initiative. mCDR engagement plans should also consider the who as well as the how. It is vital to avoid overburdening the same groups and individuals with repeated requests for input (especially true of tribal communities). Inviting diverse perspectives will likely lead to better outcomes. Neither should the burden of engagement fall solely on project developers, who often lack dedicated capacity, and could be perceived as biased. Innovative outreach methods, including youth-focused platforms and STE(A)M education, were proposed as a way to familiarize communities with mCDR prior to project initiation, in addition to more in-depth and participatory engagement methods where communities and residents are able to inform decision making.

 

Modeling

Discussion in this session revolved around i) modeling objectives; ii) the appropriate kinds, scales, resolution and accuracy of models for various stages of development and types of mCDR; and iii) what biological parameters to include in Pacific Northwest models. Participants agreed that modeling would be critical for MRV (especially in the far-field), but that models could also provide forecasts, help define uncertainty, guide decisions about project siting and monitoring, and facilitate permitting. The field is hampered by data gaps and unknowns– especially around biological impacts and feedbacks–but perfection is neither necessary nor feasible at this point. Importantly, models can help us communicate mCDR in the context of global carbon cycle and climate change.

 

Regional Test Beds

Prompted for a working definition of “test bed”, participants proposed “a place where a technology can grow from bench to demonstration without growing pains”, and defined short, medium and long-term goals across that growth phase. They then considered what such test beds might look like, in terms of technological scope, location criteria, scientific assets and expertise, and enabling social factors. Desired qualities included: capacity for high-quality physical, chemical and biological measurements and modeling (i.e. the ‘M’ in MRV); a confluence of the ‘right’ natural features; baseline understanding of natural system variability; support for interdisciplinary collaboration and public-private partnerships; access to local assets, expertise (and housing for those experts!); and opportunities to benefit and engage with communities. Test beds should also have robust data management plans, with standardized inter-operable data formats to support accessibility and transparency. Data should be open source to the extent possible, while allowing some protection for industry partners’ intellectual property. Ultimately, successful test beds will advance shared understanding and confidence in promising mCDR technologies for real-world deployment across stakeholders (regulators, buyers, supply chain, public, etc), and sectors (energy, ocean R&D, mineral and industry), something the Pacific Northwest–with its unique culture, capacity and resources–is well-equipped to deliver.

Next Steps

Enthusiasm for continued engagement around these topics was high, and participants were quick to suggest follow-on activities. Two of these–a coordinated response to the mCDR Fast-Track Action Committee’s request for input on their federal research plan, and a PNW Node listserv and Slack channel–have already been executed. Replicating the popular monthly Seattle mCDR Happy Hour in other cities was another. The Permitting & Regulations breakout group proposed that the Node draft a regional mCDR primer–including a glossary–to facilitate communication between developers, regulators and communities. Serving as an informal ‘initial contact’ for agency staff seeking information about mCDR is another possible role. With additional funding and/or dedicated capacity, the Node could also mobilize future events. Washington Sea Grant has already committed to co-hosting a Seattle-based mCDR Law & Policy symposium with Columbia University in September 2025, and would welcome involvement from this community. There may also be an opportunity for Node members to co-design a proposed UW mCDR mini-course in August 2026.

Parting Words

As participants prepared to shift to the inaugural Pacific Northwest Node Happy Hour at a nearby pub, NOAA PMEL Carbon Program Senior Scientist Dick Feely offered the following words of advice:

“Build your mCDR program on the backs of those who have come before you. We’ve had over 40 years of marine carbon research, and 20 years of ocean acidification research. Each of those groups have done exactly the same as you: gradually developed best practices and techniques to the best of their ability at the time, and established really great data systems for all to utilize. So we have a lot of resources at our disposal, including a best practice manual for ocean carbon dioxide removal, and the data systems in place through the National Data Center. Make use of these approaches and resources, and make sure that all of your data gets included in the transparent GLODAP.info database, so we can all benefit from the important observations that we are making. We all know this for certain: the oceans are under-sampled, so everything that we provide will be very useful for a lot of different applications.”

 

Participant affiliations:

  • Federal: Dept of Energy (Pacific Northwest National Lab), EPA, NOAA, US Army Corps of Engineers;
  • Tribal: Makah Tribe Office of Marine Affairs, NW Indian Fisheries Commission, Partnerships For Tribal Carbon Solutions;
  • State: WA Dept of Commerce, WA Dept of Ecology, WA Sea Grant;
  • Academic: American University, Ocean Networks Canada, Oregon State University, University Alaska Fairbanks, University of Washington, Western Washington University;
  • Industry: AirMiners, Banyu Carbon, Capture 6, Ebb Carbon, Nonlinear Ventures, Nori, Synapse Product Development, 48 North Solutions;
  • NGO: Carbon Business Council, Carbon to Sea Initiative, EDF, Fearless Fund, Fishery Friendly Climate Action, Global Ocean Health, PacCLEAN

Global network of SOLAS mCDR nodes

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

Timeline

Phase 1 (~ 3 months)

  • Establish 6 regional nodes covering Europe, Africa, Asia, North America (via OCB), South America, and Oceania building on and extending the existing global SOLAS network.
  • Each regional node will agree on a leader/team of leaders.

Phase 2 (~ 4 months)

  • Each regional node will be working on developing guidelines for monitoring, reporting, and verification (MRV) for marine CO2 removal.
  • After 6 months each node shall submit a summary report addressing the following key questions:

Our goal is reaching consensus on what monitoring, reporting and, verification (MRV) needs to achieve to be considered “satisfactory, yet achievable”.a

Monitoring

  • How far into the future do we have to monitor “removed CO2”?
  • Do we have to measure CO2 removal or is modelling acceptable for all (or some) aspects of monitoring marine CDR?
  • Should MRV be restricted to CO2 or would other processes affecting radiative forcing (e.g., methane or albedo) need to be essential components of an MRV framework?

Reporting

  • How, where, and in what form should data be made available?
  • How should we deal with “residual uncertainty”b in MRV frameworks?

Verification

  • Who is verifying the data and how?
  • Which agency is overseeing the process (e. g. UNFCCC?)

It may not be possible to answer all of these questions satisfactorily. However, attempts to answer them by the continental nodes and their subsequent synthesis will be a first step and help to develop an internationally agreeable MRV framework.

Our synthesis shall be published as “Policy Brief” in a peer-reviewed journal (including all activec participants).

 

 

asatisfactory, yet achievable means that MRV should be strict enough to be considered robust, but not too strict so that it becomes impossible to achieve.

bthis refers to uncertainty that potentially exists but currently not quantifiable (e.g. the loss of efficiency in ocean alkalinity enhancement due to biotic calcification).

cactive refers to participants that participate in meetings and engage in the process of answering the questions above in a constructive manner.

 

Watch the first meeting (timeline, goals, products) of the SOLAS mCDR Global Regional node group.

Northeast regional node

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

Coming soon…

Southeast regional node

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

We are currently looking to identify diverse stakeholders in the Southeast who would like to connect with the Southeast regional node – find more information about the node below, and if interested please fill out this interest form

Gulf of Mexico node

Posted by mmaheigan 
· Wednesday, December 4th, 2024 

On the evening of February 19, 2024 members of the Gulf of Mexico (GMx) Regional Node Working Group on Marine Carbon Dioxide Removal (mCDR) met for the first time. They kicked off the first night of the Ocean Sciences Meeting in New Orleans, a week for oceanographers across all disciplines to share their work. The evening began with a networking hour co-hosted by Carbon to Sea, Exploring Ocean Iron Solutions (ExOIS), [C]Worthy, and Ocean Visions. Leaders from the mCDR industry gathered amid the bluish glow of the tarpon exhibit at the Audubon Aquarium for a night of meaningful conversation and shared connections. After networking, members of the GMx node group moved to a breakout room for their own meeting.

This launched a new effort to address climate challenges in the Gulf Coast's unique ecological landscape. Framed by its vital connection to the Caribbean Sea through the dynamic Gulf Stream, GMx is nourished and challenged by the substantial discharge from the Mississippi River. This area is a nexus of environmental contrasts, grappling with coastal hazards such as hurricanes, escalating sea level rise, and the distressing phenomenon of coral reef bleaching.

Marine carbon dioxide removal has the potential to shape the future of the Gulf. Members sharing this belief attended the meeting to connect through local knowledge and goal setting. Nineteen participants from the Gulf region and beyond, including Louisiana, Texas, Florida, Georgia, and the Bahamas, participated in a series of interactive activities (Figure 1). After introductions, they clustered into groups according to these regions of origin and were asked to highlight several challenges and opportunities unique to their area. A few of these opportunities are:

  • High nutrient and carbon input from the Mississippi River, enhancing primary productivity.
  • The river’s buoyancy extends the residence time of coastal waters, facilitating sediment settling and potentially enhancing mCDR.
  • Integrating wetlands, estuarine, and marine environments supports diverse mCDR strategies.
  • Existing oil and gas infrastructure could support new mCDR initiatives, with significant interest from the private sector.

These challenges and opportunities then became the center of discussion. While consensus on specific actions was not reached, the group found a common interest in the environmental and socio-economic impacts of mCDR. Members closed the session by sharing two personal or professional goals for the upcoming year.

Moving forward, the group strategy involves seeking co-production opportunities with industry and non-profit partners. Possible projects include the development of an MRV (Monitoring, Reporting, and Verification) toolbox and a foundational study outlining regional mCDR opportunities. Highlighting these opportunities is essential to attract government and private investment and unite stakeholders around shared objectives. The newly formed GMx node left their kickoff meeting feeling energized to develop these plans further and launch them into action.

 

 

California Current mCDR Node

Posted by mmaheigan 
· Sunday, December 1st, 2024 

The California Current mCDR Node convened a workshop on October 7-8, 2024 in California (in partnership with California Ocean Science Trust and Southern California Coastal Water Research Project). The workshop will address topics related to the environmental effects, both positive and negative, of mCDR. Attendees represent federal, state, and local agencies, NGOs, industry, and scientists. The goal of the workshop is to foster dialogue among these California sectors and advance on a framework for assessing environmental effects of mCDR.

 

New Ocean Metaproteomics paper

Posted by mmaheigan 
· Friday, November 8th, 2024 

New Ocean Metaproteomics paper published (web link and pdf link) to help promote proteomics in environmental settings. The study is open access. This paper is a product of OCB’s Intercomparison of Ocean Metaproteomic Analyses.

Capacity Building in Physical Chemistry for Oceanography

Posted by mmaheigan 
· Friday, October 25th, 2024 

Earlier this year, we conducted an online survey and consultation with the broader ocean science community to assess what we perceive as emerging skills gaps in basic physical chemistry training and expertise in several areas of chemical oceanography, especially (but not exclusively) including the ocean carbonate system. In the survey, we asked just for this information:

  1. Expertise, applications, and professional roles
  2. Opinions concerning skills gaps in physical chemistry for different areas of oceanography and needs for capacity building

We received well over 100 responses, with very many insightful observations and answers to our questions. We invite you to read the brief summary report describing the skill gap survey results and associated community feedback on recommended paths forward. Read the report.

Join us for a virtual community discussion at OA Week in November

To follow up on this survey, we are convening an online community discussion on Tuesday 19 November at 1600-1730 GMT/1100-1230 ET as part of the Global Ocean Acidification Observing Network (GOA-ON)’s Ocean Acidification (OA) Week 2024. The purpose of this discussion will be to discuss next steps for a community activity (most likely a workshop), including its focus, content, participants, and outcomes to help address the emerging skills gap identified in the survey. Register to participate in this community discussion HERE. If you would like further information, or you represent an organization that would like to participate in this effort, please get in touch with either Heather Benway (hbenway@whoi.edu) or Simon Clegg (s.clegg@uea.ac.uk).

Swirling Currents: How Ocean Mesoscale Affects Air-Sea CO2 Exchange

Posted by mmaheigan 
· Friday, October 25th, 2024 

Due to a sparsity of in‐situ observations and the computational burden of eddy‐resolving global simulations, there has been little analysis on how mesoscale processes (e.g., eddies, meanders—lateral scales of 10s to 100s km) influence air‐sea CO2 fluxes from a global perspective. Recently, it became computationally feasible to implement global eddy‐resolving [O (10) km] ocean biogeochemical models. Many questions related to the influence of mesoscale motions on CO2 fluxes remain open, including whether ocean eddies serve as hotspots for CO2 sink or source in specific dynamic regions.

A recent study in Geophysical Research Letters investigated the contribution of ocean mesoscale variability to air-sea CO2 fluxes by analyzing the CO2 flux anomaly within the mesoscale band using a coarse-graining approach in a global eddy-resolving biogeochemical simulation. We found that in eddy-rich mid-latitude regions, ocean mesoscale variability can contribute to over 30% of the total CO2 flux variability. The cumulative net CO2 flux associated with mesoscale motions is on the order of 105 tC per year. The global pattern of cumulative mesoscale-related CO2 flux exhibits significant spatial heterogeneity, with the highest values in western boundary currents, the Antarctic Circumpolar Current, and the equatorial Pacific. The local distribution of cumulative mesoscale-related CO2 flux displays zonal bands alternate between positive (a net source) and negative (a net sink) due to the meandering nature of ocean mesoscale currents, which is related to local relative vorticity and the background cross-stream pCO2 gradient.

Figure caption. Mesoscale (<nominal 2 degree) contribution to air‐sea CO2 flux (F<2°CO2)in the model. (a)–(d) Monthly time series of F<2°CO2 (black lines) and cumulative F<2°CO2 (green/red solid lines) in four locations marked in (e). Dashed lines are the least squares regression of cumulative flux for the period 1982–2000; slopes are indicated in the bottom left; (e) Blue colors imply a CO₂ sink, and red colors represent a source. The figure shows the global distribution of the regressed slopes of cumulative F<2°CO2. Units are converted from mol m-2 per year to kg of CO2 per year using the atomic mass of CO2. This figure shows significant spatial heterogeneity of mesoscale-modulated CO2 flux, showing contributions to both CO₂ sources and sinks across different regions of the ocean, with a magnitude on the order of 105 tC per year.

 

Authors
Yiming Guo (Yale University; now at Woods Hole Oceanographic Institution)
Mary-Louise Timmermans (Yale University)

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater AT Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms AUVs bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation clouds CO2 CO3 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global ocean models global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age iceberg ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater migration minerals mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade N2 n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea NPP nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake & storage ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey predators prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline python radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonal effects seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water column water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.