Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for New OCB Research – Page 17

Upwelling and solubility drive global surface dissolved inorganic carbon (DIC) distribution

Posted by mmaheigan 
· Tuesday, August 20th, 2019 

What drives the latitudinal gradient in open-ocean surface DIC concentration? Understanding the processes that drive the distribution of carbon in the surface ocean is essential to the study of the ocean carbon cycle and future predictions of ocean acidification and the ocean carbon sink.

Authors of a recent study in Biogeosciences investigated causes of the observed latitudinal trend in DIC and salinity-normalized DIC (nDIC) (Figure 1). The latitudinal trend in nDIC is not driven solely by the latitudinal gradient in temperature (through its effects on solubility), as is commonly assumed. Careful analysis using the Global Ocean Data Analysis Project version 2 (GLODAPv2) database revealed that physical supply from below (upwelling, entrainment in winter) at high latitudes is another major driver of the latitudinal pattern. The contribution of physical exchange explains an otherwise puzzling observation: Surface waters are lower in nDIC in the high-latitude North Atlantic than in other basins. This cannot be accounted for by temperature difference but rather is explained by a difference in the carbon content of deeper waters (lower in the subarctic North Atlantic than in the subarctic North Pacific or Southern Ocean) that are mixed up into the surface during winter months.

Figure caption: (Top) spatial distributions of surface ocean DIC and (bottom) salinity-normalised (nDIC). Both, most notably nDIC, increase towards the poles. Values are normalised to year 2005 to remove bias from changing levels of atmospheric CO2 in some observations before and after 2005. Data are from GLODAPv2.

These results also suggest that the upwelling/entrainment of water that is high in alkalinity generates a large and long-lasting effect on DIC, one that persists beyond the timescale of CO2 gas exchange equilibration with the . That is to say, the impact of changes in upwelling on the ocean’s carbon source-sink strength depends not only on the DIC content of the upwelled water but also on its TA content.

Authors:
Yingxu Wu (University of Southampton)
Mathis Hain (University of California, Santa Cruz)
Matthew Humphreys (University of East Anglia and University of Southampton)
Sue Hartman (National Oceanography Centre, Southampton)
Toby Tyrrell (University of Southampton)

Air-sea gas exchange estimates biased by multi-day surface trapping

Posted by mmaheigan 
· Tuesday, August 20th, 2019 

Routine measurements of air-sea gas exchange assume a homogeneous gas concentration across the upper few meters of the ocean. But is this assumption valid? A recent study in Biogeosciences revealed substantial systematic gradients of nitrous oxide (N2O) in the top few meters of the Peruvian upwelling regime. These gradients lead to a 30% overestimate of integrated N2O emissions across the entire region, with local emissions overestimated by as much as 800%.

Figure caption: Air-sea gas exchange estimates can be biased by gas concentration gradients within the upper few meters of the ocean; in particular, surface trapping over several days’ duration can generate substantial gradients.

The N2O gradients off Peru form during multi-day events of surface trapping, in which near-surface stratification dampens turbulent mixing. Until now, surface trapping was assumed to be a diurnal (driven by solar warming) process without memory, whereby only weak gradients would form during the hours of trapping and then dissipate. It is likely that multi-day surface trapping occurs in other ocean regions as well. The total impact on emission estimates of different greenhouse gases is yet to be quantified, but given the findings in the Peruvian upwelling system, could be significant globally.

Authors:
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, Hermann W. Bange (GEOMAR)

Regional circulation changes and a growing atmospheric CO2 concentration drive accelerated anthropogenic carbon uptake in the South Pacific

Posted by mmaheigan 
· Tuesday, August 6th, 2019 

About one tenth of human CO2 emissions are currently being taken up by the Pacific Ocean, which makes the seawater more corrosive to the calcium carbonate shells and skeletons of the plants and animals that live there. Now, thanks to hard work by international teams of scientists from the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP), there are decades of data, enough to test how much this anthropogenic CO2 accumulation varies throughout the Pacific Ocean and regionally on the timescales of decades.

 

Figure caption: Map of the concentration of human-emitted CO2 along the sections where data were available from more than one decade, estimated for the year 2015.

Using a new take on an old technique, along with a wide variety of repeat biogeochemical measurements, a study in Biogeochemical Cycles revealed that Pacific anthropogenic CO2 accumulation increased from the 1995-2005 decade to the 2005-2015 decade. While the magnitude of the decadal increase was consistent with increases in human CO2 emissions over this period for most of the Pacific, the rate of change was greater than expected in the South Pacific subtropical gyre. The authors suggest that recent increases in circulation in the gyre region could have delivered an unexpectedly large amount of anthropogenic CO2-laden seawater from the surface to the ocean interior. Programs like GO-SHIP will continue to be critical for tracking the fate of human CO2 emissions and associated feedbacks on climate and marine ecosystems.

 

Authors:
B. R. Carter (Univ. Washington and PMEL)
R. A. Feely, G. C. Johnson, J. L. Bullister (PMEL)
R. Wanninkhof (NOAA AOML)
S. Kouketsu, A. Murata (JAMSTEC
R. E. Sonnerup, S. Mecking (Univ. Washington)
P. C. Pardo (Univ. Tasmania)
C. L. Sabine (Univ. Hawai‘i, Mānoa)
B. M. Sloyan, B. Tilbrook (CSIRO, Australia)
K. Speer (Florida State University
L. D. Talley (Scripps Institution of Oceanography)
F. J. Millero (Univ. Miami)
S. E. Wijffels (CSIRO and WHOI)
A. M. Macdonald (WHOI)
N. Gruber (ETH Zurich)

A new era of observing the ocean carbonate system

Posted by mmaheigan 
· Tuesday, August 6th, 2019 

Amidst a backdrop of natural variability, the ocean carbonate system is undergoing a massive anthropogenic change. To capture this anthropogenic signal and differentiate it from natural variability, carbonate observations are needed across a range of spatial and temporal scales (Figure 1), many of which are not captured by traditional oceanographic platforms. A new review of autonomous carbonate observations published in Current Climate Change Reports highlights the development and deployment of pH sensors capable of in situ measurements on autonomous platforms, which represents a major step forward in observing the ocean carbonate system. These sensors have been rigorously field-tested via large-scale deployments on profiling floats in the Southern Ocean (Southern Ocean Carbon and Climate Observations and Modeling, SOCCOM), providing an unprecedented wealth of year-round data that have demonstrated the importance of wintertime outgassing of carbon dioxide in the Southern Ocean.

Figure 1: Observational capabilities and carbonate system processes as a function of time and space. Ocean processes that affect the carbonate system (solid color shapes—labeled in the legend) are depicted as a function of the temporal and spatial scales over which they must be observed to capture important variability and/or long-term change.

Most current autonomous platforms routinely measure only a single carbonate parameter, which then requires an algorithm to estimate a second parameter so that the rest of the carbonate system can be calculated. However, the ongoing development of sensors and systems to measure, rather than estimate, other carbonate parameters may greatly reduce uncertainty in constraining the full carbonate system. It is critical that the community continue to develop and adhere to best practices for calibration and data handling as existing sensors are deployed in increasing numbers and new sensors become available. Expanding autonomous carbonate measurements will increase our understanding of how anthropogenic change impacts natural variability and will provide a means to monitor carbon uptake by the ocean in real-time at high spatial and temporal resolution. This will not only help to understand the mechanisms driving changes in the ocean carbonate system, but will allow new insights in the role of mesoscale processes in regional and global biogeochemical cycles.

 

Authors:
Seth M. Bushinsky (Princeton University/University of Hawai’i Mānoa)
Yuichiro Takeshita (Monterey Bay Aquarium Research Institute)
Nancy L. Williams (Pacific Marine Environmental Laboratory – NOAA / University of South Florida)

Can microzooplankton shape the depth distribution of phytoplankton?

Posted by mmaheigan 
· Tuesday, July 23rd, 2019 

Photosynthetic, single-celled phytoplankton form the base of many marine and lacustrine (lake) food webs. These microscopic algae typically occur in the sunlit surface layer, but in many ecosystems, there are also sub-surface peaks in phytoplankton and chlorophyll-a, their key photosynthetic pigment. Historically, scientists have explained deep chlorophyll maximum (DCM) formation by invoking “bottom-up” processes such as nutrient and light co-limitation, while less attention has been paid to “top-down” controls such as predation.

A recent study in Nature Communications challenges this conventional wisdom by arguing that microzooplankton (top-down control) can cause the formation of DCMs by preferentially consuming phytoplankton near the surface. This can occur when microzooplankton exhibit light-dependent grazing—a known but not well-understood phenomenon in which prey consumption rates increase with increasing light intensity. By incorporating this phenomenon into mathematical models, the authors showed that this can create a “spatial refuge” for phytoplankton in deeper, darker parts of the water column, where there is enough sunlight to photosynthesize, but too little for efficient microzooplankton predation. Furthermore, when light-dependent grazing is incorporated into a global ocean biogeochemistry model (COBALT: Carbon, Ocean Biogeochemistry and Lower Trophics – planktonic ecosystem model), DCMs that are already present due to bottom-up controls deepen, improving agreement between model predictions, satellite data, and in situ observations.

Figure legend: Global comparison of annual mean deep chlorophyll maxima (DCM) depths (A) predicted by the unmodified COBALT model, (B) predicted by the COBALT model modified to include light-dependent microzooplankton grazing, and (C) estimated based on satellite data. Incorporating light-dependent grazing deepens the DCM, especially in oligotrophic gyres, and improves agreement with observational data.

These findings highlight the importance of higher trophic levels in regulating aquatic primary productivity. The model predictions suggest that not only can microzooplankton suppress primary production near the surface, but by shifting phytoplankton abundances deeper, they may increase carbon export via the biological pump. Future field tests of this hypothesis—i.e. detailed grazing measurements in stratified water columns with DCMs—can elucidate the extent to which light-dependent grazing shapes phytoplankton distribution in real biological systems.

 

Authors:
Holly Moeller (University of California Santa Barbara)
Charlotte Laufkötter (University of Bern and Princeton University)
Edward Sweeney (Sea Education Association and Santa Barbara Museum of Natural History)
Matthew Johnson (Woods Hole Oceanographic Institution)

Deep ocean carbon reconstruction helps decipher a million-year-old climate mystery

Posted by mmaheigan 
· Tuesday, July 23rd, 2019 

Approximately one million years ago, Earth’s periodic ice ages increased in strength and duration, shifting from a 41,000-year pacing to a 100,000-year pacing, both linked to Earth’s orbital variations. The causes of this climate shift known as the mid-Pleistocene transition (MPT) have been debated for decades.

A recent study in Nature Geoscience addresses how the ocean carbon cycle contributed to the MPT by quantifying the carbon inventory of the deep Atlantic Ocean during this time. Using trace element and isotope ratios of fossil marine foraminifera, the authors demonstrate that an abrupt weakening of deep ocean overturning circulation between 950,000 and 900,000 years ago occurred alongside a pronounced increase in carbon content of the deep Atlantic Ocean. This study revealed significantly higher carbon concentrations in the deep North and South Atlantic basins during the post-MPT 100,000-year ice ages relative to the 41,000-year ice ages prior to the MPT (Figure 1).

Figure 1 caption: The last two million years of glacial cycles, with present day on left and age increasing from left to right. Orange data are from 41,000-year ice ages; blue data are from,100,000-year ice ages. (A) Glacial-interglacial cycles demonstrated in benthic oxygen isotopes (green), with warmer interglacials up and peak ice ages downward. (B) Atmospheric CO2 from ice core measurements (gray lines) and reconstructed from boron isotopes (circles) (C), Peak ice age neodymium isotope ratios indicating strength of density-driven deep ocean circulation (squares and triangles indicate two different sediment cores). (D) Peak ice age deep ocean carbon content (squares and diamonds indicate two independent reconstructions from the same South Atlantic sediment core).

These data indicate that since 950,000 years ago, the deep Atlantic Ocean has stored an extra 50 billion tons of carbon during peak ice ages. This study hypothesizes that this extra carbon was sequestered from the atmosphere via a feedback between Antarctic ice sheet extent and the efficiency of air-sea carbon exchange in the Southern Ocean. The authors propose that intensification of ice ages one million years ago was closely linked to enhanced ocean carbon storage and resultant lowering of atmospheric CO2 levels.

While paleoclimatologists consider the MPT to be the most recent major climate transition, the magnitude of carbon perturbation at the MPT pales in comparison to today’s human emissions. Today, humans produce 50 billion tons of carbon in only five years. Studies of the carbon cycle across past climate transitions like the MPT provide key insights on how future climate may respond to today’s carbon cycle disruption.

 

Authors
Jesse Farmer (LDEO Columbia University; now at Princeton University and Max Planck Institute for Chemistry)
Bärbel Hönisch, Laura Haynes, Maureen Raymo, Steven Goldstein, Maayan Yehudai, Joohee Kim (LDEO Columbia University)
Heather Ford (Queen Mary University of London)
Dick Kroon, Simon Jung, Dave Bell (University of Edinburgh)
Maria Jaume-Seguí, Leopoldo Pena (University of Barcelona)

 

See this related popular article and video in the Washington Post.

The causes of the 90-ppm glacial atmospheric CO2 drawdown still strongly debated

Posted by mmaheigan 
· Tuesday, July 9th, 2019 

Joint feature with GEOTRACES

Figure: Illustration of the two main mechanisms identified by this study to explain lower atmospheric CO2 during glacial periods. Left: present-day conditions; right: conditions around 19,000 years ago during the Last Glacial Maximum. The obvious explanation for lower CO2 during glacial periods – cooler ocean temperatures (darker blue shade) making CO2 more soluble, much as a glass of sparkling wine will remain fizzier for longer when it is colder – has long been dismissed as not being a significant factor. However, previous calculations assumed that the ocean cooled uniformly and was saturated in dissolved CO2. The model, consistent with reconstructions of sea surface temperature, predicts more cooling at mid latitudes compared with polar regions and also accounts for undersaturation. This nearly doubles the effect of temperature change and accounts for almost half the 90 ppm glacial-interglacial atmospheric CO2 difference. Another quarter is explained in this model by increased growth of marine algae (green blobs and inset) in the waters off Antarctica. Algae absorb CO2 from the atmosphere during photosynthesis and “pump” it into the deep ocean when they die and sink. But their growth in the present-day ocean, especially the waters off Antarctica, is limited by the availability of iron, an essential micronutrient primarily supplied by wind-borne dust. In our model an increased supply of iron to the Southern Ocean, likely originating from Patagonia, Australia and New Zealand, enhances their growth and sucks CO2 out of the atmosphere. This “fertilization” effect was greatly underestimated by previous studies. The study also finds that, contrary to the current consensus, a large expansion of sea ice off Antarctica and reconfiguration of ocean circulation may have played only a minor role in glacial-interglacial CO2 changes. Credit: Illustration by Andrew Orkney, University of Oxford.

Using an observationally constrained earth system model, S. Khatiwala and co-workers compare different processes that could lead to the 90-ppm glacial atmospheric CO2 drawdown, with an important improvement on the deep carbon storage quantification (i.e. Biological Carbon Pump efficiency). They demonstrate that circulation and sea ice changes had only a modest net effect on glacial ocean carbon storage and atmospheric CO2, whereas temperature and iron input effects were more important than previously thought due to their effects on disequilibrium carbon storage.

Authors:
Samar Khatiwala (University of Oxford, UK)
Andreas Schmittner and Juan Muglia (Oregon State University)

Forecasting air-sea CO2 flux variations several years in advance

Posted by mmaheigan 
· Tuesday, July 9th, 2019 

Year-to-year changes in the flux of CO2 between the atmosphere and the ocean impact the global carbon cycle and climate system, and challenge our ability to verify fossil fuel CO2 emissions. A new study published in Earth System Dynamics suggests that these air-sea CO2 flux variations are predictable several years in advance.

A novel set of initialized forecasts of past air-sea CO2 flux from an Earth system model (Figure 1a) confidently predicts year-to-year variations in the globally-integrated flux up to two years in advance. At regional scales, the forecast lead time increases. The predictability of CO2 flux from the initialized forecast system exceeds that obtained solely from foreknowledge of variations in external forcing (e.g., volcanic eruptions) or a simple persistence forecast (e.g., CO2 flux this year will be the same as next year). The longest-lasting forecast enhancements are in the subantarctic Southern Ocean and the northern North Atlantic (Figure 1b).

Figure 1: (a) Forecasts of the past evolution of air-sea CO2 flux in the South Pacific using an Earth System model indicate the potential to predict the future evolution of this quantity. (b) In each biome, the maximum forecast lead time in which the initialized forecast of air-sea CO2 flux beats out other forecast methods.

These results are particularly meaningful for those forecasting year-to-year changes in the global carbon budget, especially as these forecasting efforts are blind to the externally-forced variability in advance (i.e., the external forcing of the future is unknown).  In this way, forecasts of air-sea CO2 flux variations can help to inform future predictions of land-air CO2 flux and atmospheric CO2 concentration.

Authors:
Nicole Lovenduski (University of Colorado Boulder)
Stephen G. Yeager (National Center for Atmospheric Research)
Keith Lindsay (National Center for Atmospheric Research)
Matthew C. Long (National Center for Atmospheric Research)

See also the OCB Ocean-Atmosphere Interactions: Scoping directions for U.S. research Workshop to be held in October 1-3, 2019

Upwelled hydrothermal Fe stimulates massive phytoplankton blooms in the Southern Ocean

Posted by mmaheigan 
· Tuesday, July 9th, 2019 

Joint feature with GEOTRACES

Figure 1a: Southern Ocean phytoplankton blooms showing distribution, biomass (circle size) and type (color key).

In a recent study, Ardyna et al combined observations of profiling floats with historical trace element data and satellite altimetry and ocean color data from the Southern Ocean to reveal that dissolved iron of hydrothermal origin can be upwelled to the surface. Furthermore, the activity of deep hydrothermal sources can influence upper ocean biogeochemical cycles of the Southern Ocean, and in particular stimulate the biological carbon pump.

Authors:
Mathieu Ardyna
Léo Lacour
Sara Sergi
Francesco d’Ovidio
Jean-Baptiste Sallée
Mathieu Rembauville
Stéphane Blain
Alessandro Tagliabue
Reiner Schlitzer
Catherine Jeandel
Kevin Robert Arrigo
Hervé Claustre

The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

Posted by mmaheigan 
· Wednesday, June 12th, 2019 

The Chesapeake Bay is a 200-mile-long estuary with both economic and ecological importance to the mid-Atlantic region. Runoff, pollution, and algae blooms resulting in hypoxia have been major issues over the past 50 years, and much work has been done to improve the water quality and health of the Bay. Dissolved oxygen concentrations will be altered in response to climate change, but whether this will counteract the benefits of reduced nutrient loading is an important scientific and management question. Specifically, what are the impacts of climate change on future Chesapeake Bay hypoxia and on progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load (TMDL)?

(Left) Latitudinal along-bay dissolved oxygen (DO) transects for the Base scenario (Base+noCC) and TMDL scenario (TMDL+noCC) without climate change; transects for the absolute and percent changes in DO due to climate change (TMDL+CC). (Right) Cumulative hypoxic volume for six ranges of DO concentrations for each of the study years and each of the scenarios (colored circles).

A recent study in Biogeosciences quantified the competing impacts of climate change and nutrient reductions on Chesapeake Bay hypoxia. The authors used a 3-D modeling system along with projected mid-21st century changes in temperature, freshwater flow, and sea level, assuming fully achieved goals of TMDL nutrient reductions. Of these three climate change factors, increased temperature most strongly impacts future hypoxia, primarily due to decreased solubility year-round and increased respiration and remineralization in the spring. Sea level rise is expected to exhibit a small positive impact resulting from increased estuarine circulation and reduced residence time. Increased river flow is anticipated to exert a small negative impact due to increased nutrient loading.

These results demonstrate that climate change may limit the effectiveness of future management actions aimed at reducing nutrient inputs to the Chesapeake Bay. However, the positive impacts of mandated nutrient reductions still outweigh the negative impacts of climate change. Given that climate impacts are expected to intensify with time and large uncertainties remain among different climate projections, it is critical to continue examining how the Bay may evolve in the future by assessing the sensitivity of oxygen concentrations to different climate change scenarios.

 

Authors:
Isaac D. Irby (VIMS, William & Mary)
Marjorie A. M. Friedrichs (VIMS, William & Mary)
Fei Da (VIMS, William & Mary)
Kyle E. Hinson (VIMS, William & Mary)

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation CO2 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.