Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Ecological Forecasting – North American Coastlines
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Ocean-Atmosphere Interactions
      • Oceanic Methane & Nitrous Oxide
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
        • Fish Carbon WG Workshop
        • Fish carbon workshop summary
      • Marine carbon dioxide removal
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Training Activity
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Are you interested in a primer on ocean biogeochemical modeling with hands-on examples?

Posted by mmaheigan 
· Thursday, May 11th, 2023 

Look no further. This primer article explains what an ocean biogeochemical model is, how such a model is designed and applied, and includes easily accessible code examples. Refresh your memory on commonly used metrics for model evaluation through model-data comparison. Get introduced to the underlying rationale, mechanics, applications, and pitfalls of data assimilation for parameter optimization, state estimation, and observing system design.  Peruse overviews of available community code repositories and observational databases. And tour some of the important applications of ocean biogeochemical models for carbon accounting, ocean deoxygenation and acidification studies, and fisheries yield projections. The primer also includes recommendations for best practices in ocean biogeochemical modeling and discusses current limitations and anticipated future developments and challenges.  First and foremost, the article is an invitation to get involved.

Figure caption: Schematic representation of the varying level of complexity in biogeochemical models. State variables are indicated by the boxes where different colors correspond to different elemental currencies. The black arrows indicate selected biogeochemical transformations. The simplest, the nutrient–phytoplankton– zooplankton–detritus (NPZD) model, includes four state variables and one nutrient currency, often nitrogen. A typical low-complexity model includes several nutrients and nutrient currencies. Chlorophyll is omitted in the schematic, although many models have a chlorophyll state variable for each phytoplankton group to account for photoacclimation.

 

Authors
Katja Fennel (Dalhousie University)
Jann Paul Mattern (University of California, Santa Cruz)
Scott C. Doney (University of Virginia)
Laurent Bopp (Institute Pierre Simon Laplace)
Andrew M. Moore (University of California, Santa Cruz)
Bin Wang (Dalhousie University)
Liuqian Yu (Hong Kong University of Science and Technology)

Twitter @katjafennel @ScottDoney1 @laurent_bopp @DalhousieU @uvaevsc

Copyright © 2023 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.