
DATE: September 19, 2025, 8:00 a.m.- 5:00 p.m. Pacific
LOCATION: University of Washington CoMotion Idea Lab in Fluke Hall,
4000 NE Mason Rd, Seattle, WA 98195
WHO: This event is of most interest to scientists, regulatory
and legal experts, policymakers (tribal, federal, state and
municipal), NGOs and technology developers, researchers,
coastal constituents and students, but everyone with an
interest in mCDR is welcome.
Read the full description + register by Sept 12
The Pacific Northwest mCDR Node officially launched with a half-day in-person gathering of 65 invited participants at the Seattle Mountaineers Center on April 17, 2024. The location and timing of this event were chosen to facilitate participation by those traveling to Seattle to attend a separate Carbon Business Council CDR Symposium the following day. In addition to a strong showing from the Washington state mCDR community, Alaska, British Columbia, Oregon, California and Washington DC were also well-represented1.
Pacific Northwest Node co-leads Meg Chadsey (WA Sea Grant), Sara Nawaz (American University) and Kohen Bauer (Ocean Networks Canada) opened the event with an overview of the Ocean Carbon & Biogeochemistry Program’s vision for regional mCDR Nodes, how the Pacific Northwest Node might function in support of that vision (including a proposed Code of Conduct), and suggestions for potential Node objectives and activities. They then set the stage for an engaging and interactive event with a casual ‘speed-introduction’ exercise, to help participants put faces to names and make new connections.
A few invited speakers provided context for the afternoon breakout sessions. David Redford, EPA Office of Wetlands, Oceans & Watersheds, outlined the agency’s current mCDR regulatory framework. Global Ocean Health Programs & Partnerships Director Francesca Hillery shared how Partnerships for Tribal Carbon Solutions is supporting Tribal leadership in carbon removal development and governance. PNNL Earth Scientist Jessica Cross made a compelling pitch for mCDR test beds, and encouraged participants to ‘put a Pacific Northwest spin’ on the breakout session topics: Permitting & Regulations; Social Issues & Engagement; Modeling; and Test Beds.
The rest of the program was devoted to facilitated breakout discussions, report-outs and synthesis. The following paragraphs attempt to summarize these rich conversations; detailed notes from each breakout session available on request.
Permitting & Regulations
Participants categorized permitting challenges as either tactical (issues with the process itself) or strategic (stemming from data gaps and inadequate scientific and regulatory frameworks). Process length and complexity was cited as the primary tactical barrier, exacerbated by a mismatch between the pace of industry developments and the ability of agencies to respond. The strategic conversation focused on the disconnect between existing laws and fundamental mCDR processes, and the current dearth of basic scientific knowledge needed to develop fit-for-purpose regulations and ecological risk/benefit assessments. Participants noted that better awareness of regulators’ information needs would allow researchers and developers to proactively design their projects to address key issues. They also acknowledged the need for better communication between regulators, developers and communities, which could be improved by the creation of a ‘common local and federal language’.
Social Issues & Engagement
As public backlash to some proposed mCDR trials has shown, social engagement can be as critical to the success of a project as R&D, and yet it is often not prioritized. Social scientists need to be included in, and insert themselves in, the mCDR arena, especially conversations about place-based activities (such as regional test beds), as a means to better orient projects to local residents’ priorities, concerns and benefits. The session facilitator noted that for all its novelty, the social challenges facing mCDR are hardly new; we can learn from other ocean sectors like marine energy that have also met resistance. Participants recommended i) investing in mCDR risk research, so the scientific community can be better prepared to address community concerns; ii) learning from–and responding well to–public pushback; and iii) framing mCDR within the broader context of carbon dioxide removal efforts rather than treating it as an isolated initiative. mCDR engagement plans should also consider the who as well as the how. It is vital to avoid overburdening the same groups and individuals with repeated requests for input (especially true of tribal communities). Inviting diverse perspectives will likely lead to better outcomes. Neither should the burden of engagement fall solely on project developers, who often lack dedicated capacity, and could be perceived as biased. Innovative outreach methods, including youth-focused platforms and STE(A)M education, were proposed as a way to familiarize communities with mCDR prior to project initiation, in addition to more in-depth and participatory engagement methods where communities and residents are able to inform decision making.
Modeling
Discussion in this session revolved around i) modeling objectives; ii) the appropriate kinds, scales, resolution and accuracy of models for various stages of development and types of mCDR; and iii) what biological parameters to include in Pacific Northwest models. Participants agreed that modeling would be critical for MRV (especially in the far-field), but that models could also provide forecasts, help define uncertainty, guide decisions about project siting and monitoring, and facilitate permitting. The field is hampered by data gaps and unknowns– especially around biological impacts and feedbacks–but perfection is neither necessary nor feasible at this point. Importantly, models can help us communicate mCDR in the context of global carbon cycle and climate change.
Regional Test Beds
Prompted for a working definition of “test bed”, participants proposed “a place where a technology can grow from bench to demonstration without growing pains”, and defined short, medium and long-term goals across that growth phase. They then considered what such test beds might look like, in terms of technological scope, location criteria, scientific assets and expertise, and enabling social factors. Desired qualities included: capacity for high-quality physical, chemical and biological measurements and modeling (i.e. the ‘M’ in MRV); a confluence of the ‘right’ natural features; baseline understanding of natural system variability; support for interdisciplinary collaboration and public-private partnerships; access to local assets, expertise (and housing for those experts!); and opportunities to benefit and engage with communities. Test beds should also have robust data management plans, with standardized inter-operable data formats to support accessibility and transparency. Data should be open source to the extent possible, while allowing some protection for industry partners’ intellectual property. Ultimately, successful test beds will advance shared understanding and confidence in promising mCDR technologies for real-world deployment across stakeholders (regulators, buyers, supply chain, public, etc), and sectors (energy, ocean R&D, mineral and industry), something the Pacific Northwest–with its unique culture, capacity and resources–is well-equipped to deliver.
Enthusiasm for continued engagement around these topics was high, and participants were quick to suggest follow-on activities. Two of these–a coordinated response to the mCDR Fast-Track Action Committee’s request for input on their federal research plan, and a PNW Node listserv and Slack channel–have already been executed. Replicating the popular monthly Seattle mCDR Happy Hour in other cities was another. The Permitting & Regulations breakout group proposed that the Node draft a regional mCDR primer–including a glossary–to facilitate communication between developers, regulators and communities. Serving as an informal ‘initial contact’ for agency staff seeking information about mCDR is another possible role. With additional funding and/or dedicated capacity, the Node could also mobilize future events. Washington Sea Grant has already committed to co-hosting a Seattle-based mCDR Law & Policy symposium with Columbia University in September 2025, and would welcome involvement from this community. There may also be an opportunity for Node members to co-design a proposed UW mCDR mini-course in August 2026.
As participants prepared to shift to the inaugural Pacific Northwest Node Happy Hour at a nearby pub, NOAA PMEL Carbon Program Senior Scientist Dick Feely offered the following words of advice:
“Build your mCDR program on the backs of those who have come before you. We’ve had over 40 years of marine carbon research, and 20 years of ocean acidification research. Each of those groups have done exactly the same as you: gradually developed best practices and techniques to the best of their ability at the time, and established really great data systems for all to utilize. So we have a lot of resources at our disposal, including a best practice manual for ocean carbon dioxide removal, and the data systems in place through the National Data Center. Make use of these approaches and resources, and make sure that all of your data gets included in the transparent GLODAP.info database, so we can all benefit from the important observations that we are making. We all know this for certain: the oceans are under-sampled, so everything that we provide will be very useful for a lot of different applications.”
Participant affiliations:
New webinar series! Find out more 4D-BGC group website: https://4d-bgc.github.io
Past: Webinar #1 on November 26 at 0600 EST/1200 CET
Title: Advancements in Biogeophysical 4D reconstructions: New methods development and exploitation of existing products for scientific investigations
Presenter: Dr. Bruno Buongiorno Nardelli Italian National Research Council
This presentation will address two key topics: the development of physically-informed neural network methods for the joint reconstruction of physical and biological variables in the Mediterranean Sea, and the analysis of existing data-driven 4D reconstructions of POC, combined with advanced dynamical diagnostics, to uncover the interannual variability of organic carbon export in the global ocean. The first part will introduce the approach tested in the European Space Agency’s 4DMED-Sea project, while the second will focus on research conducted within the H2020 AtlantEco project.
Webinar Series Information: The 4D-BGC Working Group seeks to enhance access and utility of Biogeochemical (BGC) Argo observations through four-dimensional (4D) data products. These advanced data products aim to refine our understanding of ocean biogeochemistry, improve biogeochemical models and reanalysis products, and provide valuable insights for policy-making. The goal of this webinar series is to introduce new and in-development BGC data products, review techniques used to develop data products from in situ observations, and to explore ways in which 4D-BGC products are leveraged to answer scientific questions.
This event will highlight, in parallel, the quantitative aspects of Blue Carbon (e.g., their roles in NDCs) as well as the more qualitative aspects of Blue Carbon (e.g., cultural ecosystem services). Specifically, this event will address the ways in which blue carbon has been and can be further included in GG inventories and Nationally Determined Contributions (NDCs), through the 2025 NDC revision cycle. This event will highlight some of the tools the United States Government and Pacific partners have created to track and quantify blue carbon sinks, and to identify effective opportunities for conservation and restoration as well as emphasize the
intrinsic and cultural ecosystem services provided by blue carbon in the Pacific.
New Ocean Metaproteomics paper published (web link and pdf link) to help promote proteomics in environmental settings. The study is open access. This paper is a product of OCB’s Intercomparison of Ocean Metaproteomic Analyses.
Earlier this year, we conducted an online survey and consultation with the broader ocean science community to assess what we perceive as emerging skills gaps in basic physical chemistry training and expertise in several areas of chemical oceanography, especially (but not exclusively) including the ocean carbonate system. In the survey, we asked just for this information:
We received well over 100 responses, with very many insightful observations and answers to our questions. We invite you to read the brief summary report describing the skill gap survey results and associated community feedback on recommended paths forward. Read the report.
Join us for a virtual community discussion at OA Week in November
To follow up on this survey, we are convening an online community discussion on Tuesday 19 November at 1600-1730 GMT/1100-1230 ET as part of the Global Ocean Acidification Observing Network (GOA-ON)’s Ocean Acidification (OA) Week 2024. The purpose of this discussion will be to discuss next steps for a community activity (most likely a workshop), including its focus, content, participants, and outcomes to help address the emerging skills gap identified in the survey. Register to participate in this community discussion HERE. If you would like further information, or you represent an organization that would like to participate in this effort, please get in touch with either Heather Benway (hbenway@whoi.edu) or Simon Clegg (s.clegg@uea.ac.uk).
26-31 March 2025 · Charlotte, North Carolina, USA
https://www.aslo.org/charlotte-2025/
DEADLINE EXTENDED!! Abstracts due Oct. 28!
Share your OCB-relevent special session via this OCB form.
Are you looking to submit an abstract to present? View the session compilation with descriptions, deadlines and more information here: https://tinyurl.com/OCB-related-sessions
One of the longest running open ocean time-series on our planet, the Hawaii Ocean Time-series (HOT) can now be accessed using webODV at https://hot.webodv.awi.de.
webODV [Mieruch and Schlitzer, 2023]) is the online version of the Ocean Data View (ODV) software. It is developed at the Alfred Wegener Institute, Bremerhaven, Germany with the aim to provide clients with user-friendly interfaces in their web-browser and access datasets that are centrally maintained and administered on a server using the full capacity of ODV.
This platform has recently been adapted to serve physical, biochemical, and ecological data from the HOT program. Dr. Sebastian Mieruch has generated an automated processing chain to aggregate, harmonize, and convert HOT data to the ODV format. Video tutorials for use of webODV to access, plot, and download HOT data can be found at https://hot.webodv.awi.de/docs.
BGC Argo Webinar #8: Comparing BGC-Argo observations with models
October 16, 2024, 11am Pacific/2pm Eastern
Please join us for the quarterly GO-BGC webinar, hosted by the US Ocean Carbon and Biogeochemistry Project Office. This webinar will be focused on comparisons between BGC-Argo observations and ocean model simulations focusing on bbp and particulate forms of carbon. The webinar will begin with an update on the status of the GO-BGC float array, followed by two short presentations. We’ll then close with a community discussion and Q&A session. Recordings will be available on the OCB and GO-BGC websites.
1) Yui Takeshita (Monterey Bay Aquarium Research Institute, USA, yui@mbari.org): An update on the GO-BGC program
2) Camila Serra-Pompei (Technical University of Denmark): Assessing the potential of backscattering as a proxy for phytoplankton carbon biomass
The particulate backscattering coefficient (bbp) has often been used as an optical proxy to estimate phytoplankton carbon biomass (Cphy). However, total observed bbp is impacted by phytoplankton size, cell composition, and non-algal particles. The scarcity of phytoplankton carbon field data has prevented the quantification of uncertainties driven by these factors. Here, we first review and discuss existing bbp algorithms by applying them to bbp data from the BGC-Argo array in surface waters (<10m) and show that errors can be large when the bbp signal is low. Next, we use a global ocean circulation model (the MITgcm Biogeochemical and Optical model) that simulates plankton dynamics and associated inherent optical properties to quantify and understand uncertainties from bbp-based algorithms in surface waters. In an ideal world where field data has no methodological uncertainties, the model shows that bbp algorithms could estimate phytoplankton carbon biomass with an absolute error close to 20% in most regions.
3) Martí Galí Tàpias (Institute of Marine Sciences [ICM-CSIC], Spain): Constraining stocks and fluxes of Particulate Organic Carbon (POC) through the comparison between particulate backscattering measurements and the PISCESv2 model
BGC-Argo data offers a great opportunity for model evaluation, optimization, and the development of improved parameterizations, ultimately furthering our mechanistic understanding. However, comparison between BGC-Argo observations and models requires careful consideration of the spatiotemporal scales that each of them can resolve. When using particulate backscattering (bbp) as a proxy for particulate organic carbon (POC), additional attention must be paid to the variability in the POC/bbp ratio, its uncertainty, and its underpinning biogeochemical drivers. In this talk I will present comparisons between bbp from BGC-Argo and simulated POC based on both 3D (Eulerian) and 1D (pseudo-Lagrangian) frameworks. I will discuss the potential and limitations of model parameter optimization using BGC-Argo bbp as the observational reference. Finally, I will explore the impacts of optimized model parameters on mesopelagic POC budgets and vertical fluxes in the PISCESv2 model.
4) Discussion
Introduction to Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) Hyperspectral Observations for Water Quality Monitoring
This online, introductory course will be cost-free and have three, 1.5-hour parts:
Part 1: Introduction to the PACE Mission for Water Quality Monitoring (September 25th)
Part 2: Overview, Access, and Analysis of PACE Ocean Color Data Products (October 2nd)
Part 3: Access and Visualization of PACE-OCI Data using Python/Jupyter Notebook Software (October 9th)
Registration is now open – course will be offered in English AND Spanish!
For more information and to register visit:
NASA’s ARSET program offers free, online training on using Earth Observations for decision making that are open to the public. Courses are designed for a broad audience, ranging from introductory to advanced. For more on ARSET and to see their wealth of upcoming and previous trainings, please visit their website.
Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838 • Fax: 508-457-2193 • Email: ocb_news@us-ocb.org
Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.