Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for biological pump – Page 5

Alternative particle formation pathways identified in the Equatorial Pacific’s biological pump

Posted by mmaheigan 
· Tuesday, November 27th, 2018 

The ocean is one of the largest sinks of atmospheric carbon dioxide (CO2) on our planet, driven in part by CO2 uptake by phytoplankton in the upper ocean during photosynthesis. Eventually, a portion of the resulting organic carbon is transported to depth, where it is sequestered from the atmosphere for centuries or even millennia. Our current understanding of the biological pump is based on the export of organic material in the form of large, fast-sinking (hundreds of meters per day) particles. However, using lipids as biomarkers, a recent study from the Equatorial Pacific Ocean published in JGR Biogeosciences showed that fast-sinking particles are refractory and distinctly different from plankton in the mixed layer, whereas slow-sinking particles were more labile and had a more similar composition to mixed layer particles (Fig. 1).

Figure 1. Particle lipid compositions for different particle fractions: ML = homogenous mixed layer particles, SU = suspended, SS = slow-sinking, and FS = fast-sinking of a) labile compounds known as unsaturated fatty acids synthesized by phytoplankton that provide a lot of energy for heterotrophs and b) sterols, including cholesterol (dark blue), which can be a biomarker for heterotrophy. Mixed layer particles are the most labile, showing the least degree of heterotrophic reworking, as expected. However, fast-sinking particles are most dissimilar from those in the mixed layer, with only a small proportion of labile compounds and a high degree of heterotrophic reworking.

The authors proposed a slower, less efficient export pathway, by which phytoplankton initially aggregate to smaller, slower-sinking detrital particles and then gradually form highly degraded, larger particles that sink to depth. Since smaller particles are respired more rapidly than larger particles, the proportion of phytoplankton-captured atmospheric CO2 being stored in the deep ocean is likely reduced, particularly in regions dominated by smaller phytoplankton such as the Equatorial Pacific. This study clearly demonstrates the need for improved representation of a wider range of particle dynamics in models of the ocean’s biological pump.

 

Authors:
E. L. Cavan (University of Tasmania, previously University of Southampton)
S. Giering (National Oceanography Centre)
G. Wolff (University of Liverpool)
M. Trimmer (Queen Mary University London)
R. Sanders (National Oceanography Centre)

Artificial light from sampling platforms changes zooplankton behavior

Posted by mmaheigan 
· Monday, November 26th, 2018 

When designing sampling we make generally accepted assumptions that what we collect is representative of what is “normal” or naturally occurring at the place, time, and depth of collection. However, a recent study in Science Advances revealed that this might not be true. During round-the-clock shipboard sampling, lights used at night can actually be a form of pollution that disrupts the diel cycle of zooplankton vertical migration.

Effect of light pollution on krill from a ship (left), diel vertical migration in natural dark conditions (middle) and effect of moonlight (right). Figure by Malin Daase (UiT).

Using a Autonomous Surface Vehicle the authors documented zooplankton behavioral patterns of light avoidance never previously seen. The study compared results from high Arctic polar night (unpolluted light environment for an extended time), to near ship samples. During months of near constant darkness in the Arctic, there was still a diel vertical migration of zooplankton limited to the upper 30 m of the water column and centered around the local sun noon. Contrasting the results from light-polluted and unpolluted areas, the authors observed that the vast majority of the pelagic community exhibit a strong light-escape response in the presence of artificial light (both ship light and even headlamps from researchers in open boats). This effect was observed down to 100 m depth and 190 m from the ship. These results suggest that artificial light from traditional sampling platforms may bias studies of zooplankton abundance and diel migration within the upper 100 m. These findings underscore the need for alternative sampling methods such as autonomous platforms, particularly in dim-light conditions, to collect more accurate and representative physical and biological data for ecological studies. In addition to research cruises and sampling, anthropogenic light pollution from predicted increases in shipping, oil and gas exploration, and light-fishing are anticipated to impact the diel rhythms of zooplankton behavior all around the globe.

Authors:
Jørgen Berge (Norwegian University of Technology and Science; UiT The Arctic University of Norway)
Martin Ludvigsen (Norwegian University of Technology and Science; University Centre in Svalbard)
Maxime Geoffroy (UiT The Arctic University of Norway, Memorial University of Newfoundland)
Jonathan H. Cohen (University of Delaware)
Pedro R. De La Torre (Norwegian University of Technology and Science)
Stein M. Nornes (Norwegian University of Technology and Science)
Hanumant Singh (Northeastern University)
Asgeir J. Sørensen (Norwegian University of Technology and Science)
Malin Daase (Norwegian University of Technology and Science)
Geir Johnsen (Norwegian University of Technology and Science; Norwegian University of Technology and Science)

Dramatic Increase in Chlorophyll-a Concentrations in Response to Spring Asian Dust Events in the Western North Pacific

Posted by mmaheigan 
· Tuesday, October 23rd, 2018 

According to Martin’s iron hypothesis, input of aeolian dust into the ocean environment temporarily relieves iron limitation that suppresses primary productivity. Asian dust events that originate in the Taklimakan and Gobi Deserts occur primarily in the spring and represent the second largest global source of dust to the oceans. The western North Pacific, where productivity is co-limited by nitrogen and iron, is located directly downwind of these source regions and is therefore an ideal location for determining the response of open water primary productivity to these dust input events.

Figure 1. Daily aerosol index values (black squares) and chlorophyll-a concentrations (mg m-3, circles) during the spring (a) 2010 (weak dust event), (b) 1998 (strong dust event) in the western North Pacific. Color scale represents difference between mixed layer depth (MLD) and isolume depth (Z0.054) that indicates conditions for typical spring blooms; water column structures of MLD and isolume were identical in the spring of 1998 and 2010. Dramatic increases in chlorophyll-a (pink shading, maximum of 5.3 mg m-3) occurred in spring 1998 with a lag time of ~10 days after the strong dust event (aerosol index >2.5) on approximately April 20 compared to constant chlorophyll-a values (<2 mg m-3) in the spring of 2010.

A recent study in Geophysical Research Letters included an analysis of the spatial dynamics of spring Asian dust events, from the source regions to the western North Pacific, and their impacts on ocean primary productivity from 1998 to 2014 (except for 2002–2004) using long-term satellite observations (daily aerosol index data and chlorophyll-a). Geographical aerosol index distributions revealed three different transport pathways supported by the westerly wind system: 1) Dust moving predominantly over the Siberian continent (>50°N); 2) Dust passing across the northern East/Japan Sea (40°N‒50°N); and 3) Dust moving over the entire East/Japan Sea (35°N‒55°N). The authors observed that strong dust events could increase ocean primary productivity by more than 70% (>2-fold increase in chlorophyll-a concentrations, Figure 1) compared to weak/non-dust conditions. This result suggests that spring Asian dust events, though episodic, may play a significant role in driving the biological pump, thus sequestering atmospheric CO2 in the western North Pacific.

Another recent study reported that anthropogenic nitrogen deposition in the western North Pacific has significantly increased over the last three decades (i.e. relieving nitrogen limitation), whereas this study indicated a recent decreasing trend in the frequency of spring Asian dust events (i.e. enhancing iron limitation). Further investigation is required to fully understand the effects of contrasting behavior of iron (i.e., decreasing trend) and nitrogen (i.e., increasing trend) inputs on the ocean primary productivity in the western North Pacific, paying attention on how the marine ecosystem and biogeochemistry will respond to the changes.

 

Authors:
Joo-Eun Yoon (Incheon National University)
Il-Nam Kim (Incheon National University)
Alison M. Macdonald (Woods Hole Oceanographic Institution)

When it comes to carbon export, the mesoscale matters

Posted by hbenway 
· Tuesday, September 11th, 2018 

Figure 1. Difference in annual mean carbon export (ΔPOC flux) between a high resolution (0.1º, Hi-res) and standard resolution (1º, Analog) global climate model simulation using the CESM model. Highlighted regions show areas where vertical (purple boxes) and horizontal (red boxes) changes in nutrient transport drive increases or decreases in export, respectively.

Most Earth System models (ESMs) that are used to study global climate and the carbon cycle do not resolve the most energetic scales in the ocean, the mesoscale (10-100 km), encompassing eddies, coastal jets, and other dynamic features strongly affecting nutrient delivery, productivity, and carbon export. This prompts the question: What are we missing in climate models by not resolving the mesoscale?

Authors of a recent study published in Global Biogeochemical Cycles conducted a comparative analysis of the importance of mesoscale features in biological production and associated carbon export using standard resolution (1°) and mesoscale-resolving (0.1°) ESM simulations. The mesoscale-resolving ESM yielded only a ~2% reduction in globally integrated export production relative to the standard resolution ESM. However, a closer look at the local processes driving export in different basins revealed much larger, compensating differences (Fig. 1). For example, in regions where biological production is driven by natural iron fertilization from shelf sediment sources (Fig. 2), improved representation of coastal jets in the higher-resolution ESM reduces the cross-shelf iron delivery that fuels production (red boxes in Fig. 1). Resolving mesoscale turbulence further reduces the spatial extent of blooms and associated export, yielding a more patchy distribution than in the coarse resolution models. Together, these processes lead to a reduction in export in the Argentine Basin, one of the most productive regions on the planet, of locally up to 50%. In contrast, resolving the mesoscale results in enhanced export production in the Subantarctic (purple box in Fig. 1), where the mesoscale model resolves deeper, narrower mixed layer depths that support stronger nutrient entrainment, in turn enhancing local productivity and export.

Figure 2. An iron-driven plankton bloom structured by mesoscale features in the South Atlantic. Left is simulated dissolved iron (Fe), the limiting nutrient for this region, and right is iron in all phytoplankton classes, a proxy for biomass (phytoFe, shown in log10 scale), on January 11, the height of the bloom. Plankton blooms in the Subantarctic Atlantic are fueled by horizontal iron transport off coastal and island shelves and vertical injection from seamounts, whereas farther south in the Southern Ocean, winter vertical mixing is the primary driver of iron delivery. Mesoscale circulation, largely an unstructured mix of interacting jets and vortices, strongly affects the location and timing of carbon production and export. Click here for an animation.

In regions with very short productivity seasons like the North Pacific and Subantarctic, internally generated mesoscale variability (captured in the higher resolution ESM) yields significant interannual variation in local carbon export. In these regions, a few eddies, filaments or more amorphous mesoscale features can structure the entire production and export pattern for the short bloom season. These findings document the importance of resolving mesoscale features in ESMs to more accurately quantify carbon export, and the different roles mesoscale variability can play in different oceanographic settings.

Determining how to best sample these mesoscale turbulence-dominated blooms and scale up these measurements to regional and longer time means, is an outstanding joint challenge for modelers and observationalists. A key piece is obtaining the high temporal and spatial resolution data sets needed for validating modeled carbon export in bloom regions strongly impacted by mesoscale dynamics, which represent a large portion of the global carbon export.

Authors
Cheryl Harrison (NCAR, University of Colorado Boulder)
Matthew Long (NCAR)
Nicole Lovenduski (University of Colorado Boulder)
J. Keith Moore (University of California Irvine)

Marine Snowfall at the Equator

Posted by mmaheigan 
· Thursday, July 19th, 2018 

The continual flow of organic particles such as dead organisms and fecal material towards the deep sea is called “marine snow,” and it plays an important role in the ocean carbon cycle and climate-related processes. This snowfall is most intense where high primary production can be observed near the surface. This is the case along the equator in the Pacific and Atlantic Oceans. However, it is not well known how particles are distributed at depth and which processes influence this distribution. A recent study published in Nature Geoscience involved the use of high-resolution particle density data using the Underwater Vision Profiler (UVP) from the equatorial Atlantic and Pacific Oceans down to a depth of 5,000 meters, revealing that several previously accepted ideas on the downward flux of particles into the deep sea should be revisited.

Figure 1. The Underwater Vision Profiler (UVP) during a trial in the Kiel Fjord. The UVP provided crucial data for the new study. Photo: Rainer Kiko, GEOMAR

 

It is typically assumed that the largest particle density can be found close to the surface and that density attenuates continuously with depth. However, high-resolution particle data show that density increases again in the 300-600-meter depth range. The authors attribute this observation to the daily migratory behavior of organisms such as zooplankton that retreat to these depths during the day, contributing to the particle load via defecation and mortality.

Another surprising result is the observation of many small particles below 1,000 meters depth that contribute a large fraction of the bathypelagic particle flux. This observation counters the general assumption, especially in many biogeochemical models, that particle flux at depth comprises fast sinking particles such as fecal pellets. Diminished remineralization rates of small particles or increased disaggregation of larger particles may contribute to the elevated small particle fluxes at this depth.

Figure 2. Zonal current velocity and Particulate Organic Carbon (POC) content across the equatorial Atlantic at 23˚W as observed in November 2012. From left to right: Zonal current velocity, POC content in small particle fraction and POC content in large particle fraction (adapted from Kiko et al. 2017).

 

This study highlights the importance of coupled biological and physical processes in understanding and quantifying the biological carbon pump. Further work on this important topic can now also be submitted to the new Frontiers in Marine Science research topic “Zooplankton and Nekton: Gatekeepers of the Biological Pump” (https://www.frontiersin.org/research-topics/8114/zooplankton-and-nekton-gatekeepers-of-the-biological-pump; Co-editors R. Kiko, M. Iversen, A. Maas, H. Hauss and D. Bianchi). The research topic welcomes a broad range of contributions, from individual-based process studies, to local and global field observations, to modeling approaches to better characterize the role of zooplankton and nekton for the biological pump.

 

Authors:
R. Kiko (GEOMAR)
A. Biastoch (GEOMAR)
P. Brandt (GEOMAR, University of Kiel)
S. Cravatte (LEGOS, University of Toulouse)
H. Hauss (GEOMAR)
R. Hummels (GEOMAR)
I. Kriest (GEOMAR)
F. Marin (LEGOS, University of Toulouse)
A. M. P. McDonnell (University of Alaska Fairbanks)
A. Oschlies (GEOMAR)
M. Picheral (Laboratoire d’Océanographie de Villefranche-sur-Mer, Observatoire Océanologique)
F. U. Schwarzkopf (GEOMAR)
A. M. Thurnherr (Lamont-Doherty Earth Observatory,)
L. Stemmann (Sorbonne Universités, Observatoire Océanologique)

Unexpected acidification of deep waters in the Sea of Japan due to global warming

Posted by mmaheigan 
· Tuesday, May 22nd, 2018 

Oceans worldwide are warming up, and thermohaline circulation is expected to slow down. At the same time, ocean acidity is increasing due to the influx of anthropogenic carbon dioxide (CO2) from the atmosphere, a phenomenon called ocean acidification that has primarily been documented in shallow waters. In general, deeper waters contain less anthropogenic CO2, but predicted reductions in ventilation of deep waters may impact deep ocean chemistry, as described in a recent study in Nature Climate Change.

Figure caption: Secular trend of total scale pH at in-situ temperature and pressure at various depths between 1965 and 2015 in the Sea of Japan.

The Sea of Japan is a marginal sea with its own deep- and bottom-water formation that maintains relatively elevated oxygen levels. However, time-series data from 1965-2015 (the longest time-series available) reveal that oxygen concentrations in these deep waters are declining, indicating a reduction in ventilation that increases their residence time. As organic matter decomposition in these waters continues to accumulate more CO2, the pH decreases. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than at the surface. As a miniature ocean with its own deep- and bottom-water formation, the Sea of Japan provides insight into how future warming might alter deep-ocean ventilation and chemistry.

 

Authors:
Chen-Tung Arthur Chen (National SunYat-sen University, Taiwan and Second Institute of Oceanography, China)
Hon-Kit Lui (National SunYat-sen University and Taiwan Research Institute)
Chia-Han Hsieh (National SunYat-sen University, Taiwan)
Tetsuo Yanagi (International Environmental Management of Enclosed Coastal Seas Center, Japan)
Naohiro Kosugi (Japan Meterological Agency)
Masao Ishii (Japan Meterological Agency)
Gwo-Ching Gong (National Taiwan Ocean University)

Hotspots of biological production: Submesoscale changes in respiration and production

Posted by mmaheigan 
· Thursday, April 26th, 2018 

The biological pump is complex and variable. To better understand it, scientists have often focused on variations in biological parameters such as fluorescence and community structure, and have less often observed variations in rates of production. Production rates can be estimated using oxygen as a tracer, since photosynthesis produces oxygen and respiration consumes it. In a recent article in Deep Sea Research Part I, the authors presented high-resolution maps of oxygen in the upper 140 m of the ocean in the subtropical and tropical Atlantic, produced from a towed undulating instrument. This provides a synoptic, high-resolution view of oxygen anomalies in the surface ocean. These data reveal remarkable hotspots of biological production and respiration co-located with areas of elevated fluorescence. These hotspots are often several kilometers wide (horizontal) and ~10 m long (vertical). They are preferentially associated with edges of eddies, but not all edges sampled contained hotspots. Although this study captures only two-dimensional glimpses of these hotspots, precluding formal calculations of production rates, likely estimates of source water suggest that many of these hotspots may actually be areas of enhanced respiration rather than enhanced photosynthesis. The paper describes a conceptual model of nutrients, new production, respiration, fluorescence, and oxygen during the formation and decline of these hotspots. These data raise intriguing questions–if the hotspots do indeed have substantially different rates of production and respiration than surrounding waters, then they could lead to significant changes in estimates of production in the upper ocean. Additionally, understanding the mechanisms that produce these hotspots could be critical for predicting the effects of climate change on the magnitude of the biological pump.

(a) Oxygen concentrations and (b) fluorescence at ~1 km resolution over 300 km from 15.13°N, 57.47°W to 12.30°N, 56.42° W, as measured by sensors attached to the (c) Video Plankton Recorder II. Note that no contouring was used for this plot – every pixel represents an actual data point. Figure modified from Stanley et al., 2017. VPR image photograph by Phil Alatalo.

Authors:
Rachel H. R. Stanley (Wellesley College)
Dennis J. McGillicuddy Jr. (WHOI)
Zoe O. Sandwith (WHOI)
Haley Pleskow (Wellesley College)

Lasers shed light on giant larvacean filtration impact on the ocean’s biological pump

Posted by mmaheigan 
· Thursday, January 4th, 2018 

To accurately assess the impacts of climate change, we need to understand how atmospheric carbon is transported from surface waters to the deep sea. Grazers and filter feeders drive the ocean’s biological pump as they remove and sequester carbon at various rates. This pump extends down into the midwater realm, the largest habitat on earth. Giant larvaceans are fascinating and enigmatic occupants of the upper 400 m of the water column, where they build complex filtering structures out of mucus that can reach diameters greater than 1 m in longest dimension (Figure 1A). Because of the fragility of these structures, direct measurements of filtration rates require us to study them in situ. We developed DeepPIV, an ROV-deployable instrument (Figure 1B) to directly measure fluid motion and filtration rates in situ (Figure 1C).

Figure 1. (A) Traditional view of a giant larvacean illuminated by white ROV lights. (B) DeepPIV instrument is seen attached to Monterey Bay Aquarium Research Institute’s (MBARI) MiniROV. (C) DeepPIV-illuminated interior view of a giant larvacean house, where particle motion in ambient seawater serves as a proxy for fluid motion. White arrows in (A) and (C) indicate larvacean head/trunk; white arrow in (B) indicates DeepPIV.

The filtration rates we measured for giant larvaceans are far greater than for any other zooplankton filter feeder. When combined with abundance data from a 22-year time series, the grazing impact of giant larvaceans indicates that within 13 days, they can filter the total volume of water within their habitable depth range (~100-300 m; based on maximum abundance and measured filtration rates). Our results reveal that the contribution of giant larvaceans to vertical carbon flux is much greater than previously thought. Small larvaceans, which are present in the water column in even larger quantities than giant larvaceans, may also have a measurable impact on carbon fluxes. New technologies such as DeepPIV are yielding more quantitative observations of midwater filter feeders, which is improving our understanding of the roles that deep-water biota play in the long-term removal of carbon from the atmosphere.

Read the full journal article: http://advances.sciencemag.org/content/3/5/e1602374.full

Authors: (All at MBARI)
Kakani Katija
Rob E. Sherlock
Alana D. Sherman
Bruce H. Robison

Zooplankton play a key and diverse role in the ocean carbon cycle

Posted by mmaheigan 
· Thursday, December 7th, 2017 

How does the enormous diversity of zooplankton species, life cycles, size, feeding ecology, and physiology affect their role in ocean food webs and cycling of carbon?

In the 2017 issue of Annual Review of Marine Science, Steinberg and Landry review the fundamental and multifaceted roles that zooplankton play in the cycling and export of carbon in the ocean. Carbon flows through marine pelagic ecosystems are complex due to the diversity of zooplankton consumers and the many trophic levels they occupy in the food web–from single-celled herbivores to large carnivorous jellyfish. Zooplankton also contribute to carbon export processes through a variety of mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations).


Figure 1.  Pathways of cycling and export of carbon by zooplankton in the ocean.

Climate change and other stressors are already affecting zooplankton abundance, distribution, and life cycles, and are predicted to result in widespread changes in zooplankton carbon cycling in the future. These changes will affect both the larger marine food web that depends upon zooplankton for food (fish) or recycled products for growth (primary producers) and the amount of carbon exported into the deep sea–where far from contact with the atmosphere it no longer contributes to global warming.

 

Authors:

Deborah K. Steinberg, Virginia Institute of Marine Science, The College of William and Mary
Michael R. Landry, Scripps Institution of Oceanography

WBC Series: Frontiers in western boundary current research

Posted by mmaheigan 
· Friday, November 10th, 2017 

WBC Series Guest Editors: Andrea J. Fassbender1 and Stuart P. Bishop2

1. Monterey Bay Aquarium Research Institute
2. North Carolina State University

Western boundary current (WBC) regions are often studied for their intensity of air-sea interaction and mesoscale variability, yet research addressing the implications of these characteristics for biogeochemical cycling has lagged behind. WBCs, and their extension jets, display a wide breadth of physical processes that give rise to variability ranging from submesoscale (1-10 km) to basin scale (1000 km). WBC extension jets can act as both barriers and conduits for biological and chemical exchanges between subpolar-subtropical water masses, likely serving an important role in local chemical fluxes and biological community composition. Additionally, WBC regions are known for their formation of subtropical mode waters, carrying their source water biogeochemical signatures into the ocean interior. Interactions between (sub)mesoscale processes, mode water formation, and cross frontal exchanges of chemicals and organisms remain an important and nascent area of research.

In addition to the physical dynamics, many questions remain regarding the role of WBC regions in the global carbon cycle. Recent work suggests that these domains exhibit physically mediated export of biogenic particles and are gateways for anthropogenic carbon injection into the ocean interior. Such recent discovery that WBC processes may be strongly linked to the biological carbon pump and anthropogenic carbon storage speaks to the challenges associated with observing these ocean realms. While much has been learned from pairing satellite remote sensing with in situ physical oceanographic observations, biogeochemical analyses have historically been limited by the lack of necessary observing tools. Thus, there remains a critical knowledge gap on the role of WBCs in the global carbon cycle and other biogeochemical cycles.

With OceanObs’19 approximately two years away, the recent Ocean Carbon Hot Spots workshop assessed community interests and perspectives, revealing that it is an opportune time to make use of novel autonomous observing platforms and biogeochemical sensors to unravel some of the mysteries surrounding the role of WBC extensions in marine biogeochemical cycling. The articles herein present some of the most pressing research questions and observing hurdles related to WBCs from the perspectives of physical, chemical, and biological oceanographers and modelers working in this arena.

Series Articles:

Fine-scale biophysical controls on nutrient supply, phytoplankton community structure, and carbon export in western boundary current regions, S. Clayton, P. Gaube, T. Nagai, M.M. Omand, M. Honda

Decadal variability of the Kuroshio Extension system and its impact on subtropical mode water formation B. Qiu, E. Oka, S.P. Bishop, S. Chen, A.J. Fassbender

Western boundary currents as conduits for the ejection of anthropogenic carbon from the thermocline K.B. Rodgers, P. Zhai, D. Iudicone, O. Aumont, B. Carter, A. J. Fassbender, S. M. Griffies, Y. Plancherel, L. Resplandy, R.D. Slater, K. Toyama

The role of western boundary current regions in the global carbon cycle A.R. Gray, J. Palter

Observing air-sea interaction in the western boundary currents and their extension regions: Considerations for OceanObs 2019 D. Zhang, M.F. Cronin, X. Lin, R. Inoue, A.J. Fassbender, S.P. Bishop, A. Sutton

 

US CLIVAR Variations Issue PDF (compiled articles)

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater AT Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms AUVs bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation clouds CO2 CO3 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea NPP nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.