Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Ecological Forecasting – North American Coastlines
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Ocean-Atmosphere Interactions
      • Oceanic Methane & Nitrous Oxide
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
        • Fish Carbon WG Workshop
        • Fish carbon workshop summary
      • Marine carbon dioxide removal
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Training Activity
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • OCB Science Highlights
  • News

Archive for deep ocean – Page 2

Phytoplankton bloom from molten lava

Posted by mmaheigan 
· Wednesday, September 18th, 2019 

During June-August 2018, the oligotrophic North Pacific Ocean received an enormous quantity of nutrients in the form of molten lava, delivered by the erupting Kilauea on the big island of Hawaii.  A phytoplankton bloom formed in response to the input of lava and an expedition was rapidly mobilized to determine its composition and the relevant biogeochemistry. We found that in addition to the nutrients derived from lava, exogenous nitrate was also present in the surface waters. Remotely operated vehicle observations in September 2019 by scientists at the Woods Hole Oceanographic Institution showed that lava from the 2018 eruption had reached depths of 700 m. Therefore, enabled by the intensity of the eruption and the island’s steep bathymetry, lava flows were able to extend below the thermocline and penetrate into nitrate-rich waters. Based on isotopic signatures of nitrate in the bloom, we inferred that heating of deep ocean waters resulted in the formation of buoyant seawater plumes, which rose to the sea surface.  The rapid response expedition in July 2018 provided a unique opportunity to see first-hand how a massive input of exogenous nutrients alters marine ecosystems attuned to oligotrophic conditions.

Read more:
Ducklow, H. and T. Plank (06 Sep 2019) Volcano-stimulated marine photosynthesis. Science. Vol. 365, Issue 6457, pp. 978-979
DOI: 10.1126/science.aay8088>

Wilson, S. et al. (06 Sep 2019) Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean. Science Vol. 365, Issue 6457, pp.1040-1044
DOI: 10.1126/science.aax4767

Northeast Pacific time-series reveals episodic events as major player in carbon export

Posted by mmaheigan 
· Tuesday, April 16th, 2019 

Temporal fluctuations in the oceanic carbon budget play an important role in the cycling of organic matter from production in surface waters to consumption and sequestration in the deep ocean. A 29-year time-series (1989-2017) of particulate organic carbon (POC) fluxes and seafloor measurements of oxygen consumption in the abyssal northeast Pacific (Sta. M, 4,000 m depth) recently revealed an increasing proportional contribution from episodic events over the past seven years. From 2011 to 2017, 43% of POC flux arrived during high-magnitude (≥ mean + 2 σ) episodic events. Time lags between changes in satellite-estimated export flux (EF), POC flux to the seafloor, and seafloor oxygen consumption varied from 0 to 70 days among six flux events, which could be attributed to variable remineralization rates and/or particle sinking speeds. The Martin equation, a commonly used model to estimate carbon flux, predicted background fluxes well but missed episodic fluxes, subsequently underestimating the measured fluxes by almost 50% (Figure 1). This study reveals the potential importance of episodic POC pulses into the deep sea in the oceanic carbon budget, which has implications for observing infrastructure, model development, and field campaigns focused on quantifying carbon export.

Figure Caption: (A) Station M POC flux measured from sediment traps compared to Martin model estimates, from 1989 to 2017. (B) Model performance for years with >50% sampling coverage: (POC fluxMartin − POC fluxtrap)/POC fluxtrap 100.

 

Authors:
Kenneth Smith (MBARI)
Henry Ruhl (MBARI, NOC)
Christine Huffard (MBARI)
Monique Messié (MBARI, Aix Marseille Université)
Mati Kahru (Scripps)

 

See also https://www.mbari.org/carbon-pulses-climate-models/

Building ocean biogeochemistry observing capacity, one float at a time: An update on the Biogeochemical-Argo Program

Posted by mmaheigan 
· Thursday, July 5th, 2018 

By Ken Johnson (MBARI)

The Biogeochemical-Argo (BGC-Argo) Program is an international effort to develop a global network of biogeochemical sensors on Argo profiling floats that has emerged from over a decade of community discussion and planning. While there is no formal funding for this global program, it is being implemented via a series of international research projects that harness the unique capabilities provided by BGC profiling floats. The U.S. Ocean Carbon and Biogeochemistry (OCB) Program maintains and supports a U.S. BGC-Argo subcommittee as a focal point for U.S. community input on the implementation of the global biogeochemical float array and associated science program development.

Figure 1. Steve Riser deploying a SOCCOM float from the R/V Palmer

About BGC-Argo Floats
BGC-Argo floats can carry a suite of chemical and bio-optical sensors (Figure 1 – Float Schematic).  They have enough energy to make about 250 to 300 vertical profiles from 2000 m to the surface.  At a cycle time of 10 days, that corresponds to a lifetime near 7 years.  The long endurance allows the floats to resolve seasonal to interannual variations in carbon and nutrient cycling throughout the water column.  These time scales are difficult to study from ships and ocean interior processes are hard to resolve from satellites.  BGC profiling floats extend the capabilities of these traditional observing systems in significant ways.

Figure 2. Images of Navis and APEX floats used in the SOCCOM program. These floats carry oxygen, nitrate, pH, and bio-optical (chlorophyll fluorescence and backscatter) sensors.

All of the data from profiling floats operating as part of the Argo program must be available in real-time with no restrictions on access.  The Argo Global Data Assembly centers in France and the USA both provide complete listings of all BGC profiles (argo_bio-profile_index.txt) and access to the data.  Extensive documentation of the data processing protocols is available from the Argo Data Management Team.  Individual research programs, such as SOCCOM (see below), may also provide direct data access to the observed data along with value added products such as best estimates of pCO2 derived from pH sensor data.

Regional Deployments
In 2018, it is projected that 127 profiling floats with biogeochemical sensors are will be deployed, including ~40 floats by U.S. projects. Most of the U.S. deployments (30+) will be carried out by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project (Figure 2 – Float Deployment). These floats will carry oxygen, nitrate, pH, chlorophyll fluorescence, and backscatter sensors. As part of the NOAA Tropical Pacific Observing System (TPOS) program, Steve Riser’s group (Univ. Washington) will deploy 3 BGC-Argo floats per year in the equatorial Pacific over the next 4 years. These floats will be equipped with oxygen, pH, bio-optical sensors and Passive Acoustic Listener (PAL) sensors, which provide wind speed estimates at 15-minute intervals while the floats are parked at 1000 m.  Wind speed is derived from the noise spectrum of breaking waves. Steve Emerson (Univ. Washington), with NSF support, is also deploying floats equipped with oxygen, nitrate and pH sensors in the equatorial Pacific. With funding from NSF, Andrea Fassbender (MBARI) will deploy two floats at Ocean Station Papa in the northeast Pacific in collaboration with the EXPORTS program. These floats will also carry oxygen, nitrate, pH, and bio-optical sensors.

Nearly 90 BGC floats will be deployed in 2018 by other nations in multiple ocean basins.  Much of this effort will focus on the North Pacific and North Atlantic.  The sensor load on these floats is somewhat variable. Some will be deployed with only oxygen sensors or bio-optical sensors for chlorophyll fluorescence and particle abundance. Others will carry the full suite of six sensors (oxygen, nitrate, pH, chlorophyll fluorescence, backscatter, and irradiance) that are outlined in the BGC-Argo Implementation Plan (BGC-Argo, 2016). These floats will contribute to the existing array of 305 biogeochemical floats (Figure 3 BGC Argo Map).

Community Activities
In response to the tremendous interest in the scientific community in the capabilities of profiling floats, OCB is sponsoring a Biogeochemical Float Workshop at the University of Washington in Seattle from July 9-13, 2018 to begin the process of transferring this expertise to the broader oceanographic community, bringing together potential users of this technology to discuss biogeochemical profiling float technology, sensors, and data management and begin the process of the intelligent design of future scientific experiments. The workshop will provide participating scientists direct access to the facilities of the Float Laboratory operated by Riser. This workshop builds on a previous OCB workshop Observing Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders (Johnson et al., 2009). BGC-Argo will also have a prominent presence at the 6th Argo Science Workshop (October 22-24, 2018, Tokyo, Japan) and OceanObs19 (September 16-20, 2019, Honolulu, HI).

Figure 3. May 2018 map of the location of BGC-Argo floats that have reported in the previous month and sensor types on these floats. From jcommops.org.

BGC-Argo Publications
Several resources now highlight the capabilities of profiling floats to accomplish scientific observing goals. A web-based bibliography of biogeochemical float papers hosted on the Biogeochemical-Argo website currently includes >100 publications and continues to grow. A special issue of Journal of Geophysical Research: Oceans focused on the SOCCOM program is in progress with 11 papers now available and a dozen more forthcoming. These papers include summaries of the technical capabilities of floats and the biogeochemical sensors, comparisons of float bio-optical data with satellite remote sensing observations, seasonal and interannual assessments of air-sea oxygen flux, under-ice biogeochemistry, carbon export, comparisons of pCO2 estimated from floats with pH vs. time-series data, and net community production. The connection of float observations with numerical models is a special focus of the program and this is highlighted in several papers, including a description of the Biogeochemical Southern Ocean State Estimate (SOSE), which is a data assimilating BGC model. Results from Observing System Simulation Experiments (OSSEs) used to assess the number of floats needed for large-scale observations are also reported. The BGC-Argo steering committee is developing a community white paper for the OceanObs19 conference in September 2019. BGC-Argo also develops and distributes a community newsletter.

For more information, visit the BGC-Argo website or reach out to the U.S. BGC-Argo Subcommittee.

 

 

 

 

Increased temperatures suggest reduced capacity for carbon

Posted by mmaheigan 
· Thursday, January 18th, 2018 

The ocean’s biological pump works to draw down atmospheric carbon dioxide (CO2) by exporting carbon from the surface ocean. This process is less efficient at higher temperatures, implying a possible climate feedback. Recent work by Cael et al. provides an explanation of why this feedback occurs and an estimate of its severity.

In a highly simplified view, carbon export depends on the balance between two temperature-dependent processes: 1) The autotrophic production and 2) the heterotrophic respiration of organic carbon. Cael and Follows (Geophysical Research Letters 2016) recently developed a mechanistic model based on established temperature dependencies for photosynthesis and respiration to explore feedbacks between export efficiency and climate. Heterotrophic growth rates increase more so than phototrophic rates with increasing temperature, which suggests that at higher temperatures, community respiration will increase relative to production, thereby decreasing export efficiency. Although simplistic, the model captures the temperature dependence of export efficiency observations.

Figure: Schematic of the mechanism on which the Cael and Follows (2016) model is based. (a) Photosynthesis (dark grey) and respiration (light grey) respond to temperature differently, yielding (b) a decline in export efficiency at higher temperatures.

More recently, Cael, Bisson, and Follows (Limnology and Oceanography 2017) applied this model to sea surface temperature records and estimated a ~1.5% decline in globally-averaged export efficiency over the past three decades of increasing ocean temperatures as a result of this metabolic mechanism. This ~1.5% decline is equivalent to a reduced ocean sequestration of approximately 100 million fewer tons of carbon annually, comparable to the annual carbon emissions of the United Kingdom. The model provides a framework in which to consider the relationship between climate and ocean carbon export that might also elucidate large-scale (e.g., glacial-interglacial) atmospheric CO2 changes of the past.

Authors:
B. B. Cael (MIT/WHOI)
Kelsey Bisson (UCSB)
Mick Follows (MIT)

Lasers shed light on giant larvacean filtration impact on the ocean’s biological pump

Posted by mmaheigan 
· Thursday, January 4th, 2018 

To accurately assess the impacts of climate change, we need to understand how atmospheric carbon is transported from surface waters to the deep sea. Grazers and filter feeders drive the ocean’s biological pump as they remove and sequester carbon at various rates. This pump extends down into the midwater realm, the largest habitat on earth. Giant larvaceans are fascinating and enigmatic occupants of the upper 400 m of the water column, where they build complex filtering structures out of mucus that can reach diameters greater than 1 m in longest dimension (Figure 1A). Because of the fragility of these structures, direct measurements of filtration rates require us to study them in situ. We developed DeepPIV, an ROV-deployable instrument (Figure 1B) to directly measure fluid motion and filtration rates in situ (Figure 1C).

Figure 1. (A) Traditional view of a giant larvacean illuminated by white ROV lights. (B) DeepPIV instrument is seen attached to Monterey Bay Aquarium Research Institute’s (MBARI) MiniROV. (C) DeepPIV-illuminated interior view of a giant larvacean house, where particle motion in ambient seawater serves as a proxy for fluid motion. White arrows in (A) and (C) indicate larvacean head/trunk; white arrow in (B) indicates DeepPIV.

The filtration rates we measured for giant larvaceans are far greater than for any other zooplankton filter feeder. When combined with abundance data from a 22-year time series, the grazing impact of giant larvaceans indicates that within 13 days, they can filter the total volume of water within their habitable depth range (~100-300 m; based on maximum abundance and measured filtration rates). Our results reveal that the contribution of giant larvaceans to vertical carbon flux is much greater than previously thought. Small larvaceans, which are present in the water column in even larger quantities than giant larvaceans, may also have a measurable impact on carbon fluxes. New technologies such as DeepPIV are yielding more quantitative observations of midwater filter feeders, which is improving our understanding of the roles that deep-water biota play in the long-term removal of carbon from the atmosphere.

Read the full journal article: http://advances.sciencemag.org/content/3/5/e1602374.full

Authors: (All at MBARI)
Kakani Katija
Rob E. Sherlock
Alana D. Sherman
Bruce H. Robison

Zooplankton play a key and diverse role in the ocean carbon cycle

Posted by mmaheigan 
· Thursday, December 7th, 2017 

How does the enormous diversity of zooplankton species, life cycles, size, feeding ecology, and physiology affect their role in ocean food webs and cycling of carbon?

In the 2017 issue of Annual Review of Marine Science, Steinberg and Landry review the fundamental and multifaceted roles that zooplankton play in the cycling and export of carbon in the ocean. Carbon flows through marine pelagic ecosystems are complex due to the diversity of zooplankton consumers and the many trophic levels they occupy in the food web–from single-celled herbivores to large carnivorous jellyfish. Zooplankton also contribute to carbon export processes through a variety of mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations).


Figure 1.  Pathways of cycling and export of carbon by zooplankton in the ocean.

Climate change and other stressors are already affecting zooplankton abundance, distribution, and life cycles, and are predicted to result in widespread changes in zooplankton carbon cycling in the future. These changes will affect both the larger marine food web that depends upon zooplankton for food (fish) or recycled products for growth (primary producers) and the amount of carbon exported into the deep sea–where far from contact with the atmosphere it no longer contributes to global warming.

 

Authors:

Deborah K. Steinberg, Virginia Institute of Marine Science, The College of William and Mary
Michael R. Landry, Scripps Institution of Oceanography

Tiny marine animals strongly influence the carbon cycle

Posted by mmaheigan 
· Thursday, August 31st, 2017 

What controls the amount of organic carbon entering the deep ocean? In the sunlit layer of the ocean, phytoplankton transform inorganic carbon to organic carbon via a process called photosynthesis. As these particulate forms of organic carbon stick together, they become dense enough to sink out of the sunlit layer, transferring large quantities of organic carbon to the deep ocean and out of contact with the atmosphere.

However, all is not still in the dark ocean. Microbial organisms such as bacteria, and zooplankton consume the sinking, carbon-rich particles and convert the organic carbon back to its original inorganic form. Depending on how deep this occurs, the carbon can be physically mixed back up into the surface layers for exchange with the atmosphere or repeat consumption by phytoplankton. In a recent study published in Biogeosciences, researchers used field data and an ecosystem model in three very different oceanic regions to show that zooplankton are extremely important in determining how much carbon reaches the deep ocean.

Figure 1. Particle export and transfer efficiency to the deep ocean in the Southern Ocean (SO, blue circles), North Atlantic Porcupine Abyssal Plain site (PAP, red squares) and the Equatorial Tropical North Pacific (ETNP, orange triangles) oxygen minimum zone. a) particle export efficiency of fast sinking particles (Fast PEeff) against primary production on a Log10 scale. b) transfer efficiency of particles to the deep ocean expressed as Martin’s b (high b = low efficiency). Error bars in b) are standard error of the mean for observed particles, error too small in model to be seen on this plot.

In the Southern Ocean (SO), zooplankton graze on phytoplankton and produce rapidly sinking fecal pellets, resulting in an inverse relationship between particle export and primary production (Fig. 1a). In the North Atlantic (NA), the efficiency with which particles are transferred to the deep ocean is comparable to that of the Southern Ocean, suggesting similar processes apply; but in both regions, there is a large discrepancy between the field data and the ecosystem model (Fig. 1b), which poorly represents particle processing by zooplankton. Conversely, much better data-model matches are observed in the equatorial Pacific, where lower oxygen concentrations mean fewer zooplankton; this reduces the potential for zooplankton-particle interactions that reduce particle size and density, resulting in a lower transfer efficiency.

This result suggests that mismatches between the data and model in the SO and NA may be due to the lack of zooplankton-particle parameterizations in the model, highlighting the potential importance of zooplankton in regulating carbon export and storage in the deep ocean. Zooplankton parameterizations in ecosystem models must be enhanced by including zooplankton fragmentation of particles as well as consumption. Large field programs such as EXPORTS could help constrain these parameterisation by collecting data on zooplankton-particle interaction rates. This will improve our model estimates of carbon export and our ability to predict future changes in the biological carbon pump. This is especially important in the face of climate-driven changes in zooplankton populations (e.g. oxygen minimum zone (OMZ) expansion) and associated implications for ocean carbon storage and atmospheric carbon dioxide levels.

 

Authors:
Emma L. Cavan (University of Tasmania)
Stephanie A. Henson (National Oceanography Centre, Southampton)
Anna Belcher (University of Southampton)
Richard Sanders (National Oceanography Centre, Southampton)

« Previous Page

Filter by Keyword

234Th disequilibrium abundance acidification africa air-sea flux air-sea interactions air-sea interface algae alkalinity allometry ammonium AMOC anoxia anoxic Antarctic anthro impacts anthropogenic carbon aquaculture aragonite saturation arctic Argo argon arsenic artificial seawater Atlantic Atlantic modeling atmospheric carbon atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical cycling biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biological uptake biophysics bloom blooms blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite calcium carbonate carbon-climate feedback carbon-sulfur coupling carbon budget carbon cycle carbon dioxide carbon export carbon sequestration carbon storage Caribbean CCA CCS changi changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation climate change climate variability CO2 CO2YS coastal darkening coastal ocean cobalt Coccolithophores community composition conservation cooling effect copepod coral reefs CTD currents cyclone data data access data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diagenesis diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate discrete measurements dissolved inorganic carbon dissolved organic carbon DOC DOM domoic acid dust DVM earth system models ecology ecosystems ecosystem state eddy Education Ekman transport emissions ENSO enzyme equatorial regions error ESM estuarine and coastal carbon estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production EXPORTS extreme events extreme weather events faecal pellets filter feeders filtration rates fire fish Fish carbon fisheries floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone fronts functional role future oceans geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas Greenland groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inverse circulation ions iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio laboratory vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane methods microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixing mixotrophy modeling models mode water molecular diffusion MPT multi-decade n2o NAAMES NASA NCP net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nuclear war nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean acidification data ocean carbon uptake and storage ocean color ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation overturning circulation oxygen pacific paleoceanography particle flux particles pCO2 PDO peat pelagic PETM pH phenology phosphorus photosynthesis physical processes physiology phytoplankton PIC plankton POC polar regions pollutants precipitation predation prediction primary production primary productivity Prochlorococcus proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satell satellite scale seafloor seagrass sea ice sea level rise seasonal patterns seasonal trends sea spray seaweed sediments sensors shelf system shells ship-based observations shorelines silicate silicon cycle sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano warming water clarity water quality waves western boundary currents wetlands winter mixing world ocean compilation zooplankton

Copyright © 2023 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.