Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
    • Code of Conduct
    • Get Involved
    • Project Office
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
  • Activities
    • Summer Workshop
    • OCB Webinars
    • Guidelines for OCB Workshops & Activities
    • Topical Workshops
      • CMIP6 Models Workshop
      • Coastal BGS Obs with Fisheries
      • C-saw extreme events workshop
      • Expansion of BGC-Argo and Profiling Floats
      • Fish, fisheries and carbon
      • Future BioGeoSCAPES program
      • GO-BCG Scoping Workshop
      • Lateral Carbon Flux in Tidal Wetlands
      • Leaky Deltas Workshop – Spring 2025
      • Marine CDR Workshop
      • Ocean Nucleic Acids ‘Omics
      • Pathways Connecting Climate Changes to the Deep Ocean
    • Small Group Activities
      • Aquatic Continuum OCB-NACP Focus Group
      • Arctic-COLORS Data Synthesis
      • BECS Benthic Ecosystem and Carbon Synthesis WG
      • Carbon Isotopes in the Ocean Workshop
      • CMIP6 WG
      • Filling the gaps air–sea carbon fluxes WG
      • Fish Carbon WG
      • Meta-eukomics WG
      • mCDR
      • Metaproteomic Intercomparison
      • Mixotrophs & Mixotrophy WG
      • N-Fixation WG
      • Ocean Carbonate System Intercomparison Forum
      • Ocean Carbon Uptake WG
      • OOI BGC sensor WG
      • Operational Phytoplankton Observations WG
      • Phytoplankton Taxonomy WG
    • Other Workshops
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Hackweek 2025
      • PACE Hackweek 2024
      • PACE Training Activity 2022
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB Topical Websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
      • Guidelines for OCB Workshops & Activities
    • Travel Support
  • Publications
    • OCB Workshop Reports
    • Science Planning and Policy
    • Newsletter Archive
  • Science Highlights
  • News

Archive for ocean carbon uptake and storage – Page 5

Ocean iron fertilization commercialization: bad idea; Continued research: good idea

Posted by mmaheigan 
· Tuesday, January 21st, 2020 

Amidst little to no substantive global action on climate change mitigation, individuals and companies have been exploring various geoengineering strategies as a possible alternative. Ocean Iron Fertilization (OIF) is an ocean-based strategy that involves the addition of iron to the sunlit upper layers of the ocean in iron-limited areas such as the Southern Ocean in order to stimulate marine phytoplankton growth and increase drawdown of carbon dioxide. Authors of a recent technology review in the Journal of Science Policy & Governance argue that a market-based approach to Southern Ocean iron fertilization is not advisable, but recommends continued research into the matter.

Figure 1: Idealized schematic of carbon cycling and the biological in a natural High Nutrient Low Chlorophyll Region (HNLC) and an iron fertilized HLNC. White arrows represent carbon transport. The addition of iron may dramatically increase surface biomass but only a small fraction of that is additional sequestered in the deep ocean or the sea floor.

This study begins by asking whether or not fertilizing the Southern Ocean could actually create a sustainable carbon sink. A comprehensive literature review revealed that while iron fertilization almost certainly will stimulate new primary production, what is much less clear is how much of that carbon will sink out of the surface ocean and be sequestered long-term. Given the scientific uncertainty, it would be ill-advised to commercialize iron fertilization in emerging carbon offset markets. In addition to concerns about the fundamental feasibility and potential adverse side effect of fertilization, the study argues that any market framework would be corrupted by perverse incentives created by the inability to establish reliable baselines or to accurately and comprehensively document and quantify the effects of fertilization, thus making it impossible to provide fair and consistent compensation. Nevertheless, recent history shows that fertilization activity on unregulated voluntary offset markets motivated by the promise of an easy fix can and will continue to emerge. This study concludes that continued research is needed to constrain the public perception and clarify the reality of an iron bullet.

Author:
Tyler Rohr (MIT/WHOI, currently at US Department of Energy)

The past, present, and future of the ocean carbon cycle: A global data product with regional insights

Posted by mmaheigan 
· Tuesday, January 21st, 2020 

A new study published in Scientific Reports debuts a global data product of ocean acidification (OA) and buffer capacity from the beginning of the Industrial Revolution to the end of the century (1750-2100 C.E.). To develop this product, the authors linked one of the richest observational carbon dioxide (CO2) data products (6th version of the Surface Ocean CO2 Atlas, 1991-2018, ~23 million observations) with temporal trends modeled at individual locations in the global ocean. By linking the modeled pH trends to the observed modern pH distribution, the climatology benefits from recent improvements in both model design and observational data coverage, and is likely to provide more accurate regional OA trajectories than the model output alone. The authors also show that air-sea CO2 disequilibrium is the dominant mode of spatial variability for surface pH, and discuss why pH and calcium carbonate mineral saturation states (Omega), two important metrics for OA, show contrasting spatial variability. They discover that sea surface temperature (SST) imposes two large but cancelling effects on surface ocean pH and Omega, i.e., the effects of SST on (a) chemical speciation of the carbonic system; and (b) air-sea exchange of CO2 and the subsequent DIC/TA ratio of the seawater. These two processes act in concert for Omega but oppose each other for pH. As a result, while Omega is markedly lower in the colder polar regions than in the warmer subtropical and tropical regions, surface ocean pH shows little latitudinal variation.

Figure 1. Spatial distribution of global surface ocean pHT (total hydrogen scale, annually averaged) in past (1770), present (2000) and future (2100) under the IPCC RCP8.5 scenario.

This data product, which extends from the pre-Industrial era (1750 C.E.) to the end of this century under historical atmospheric CO2 concentrations (pre-2005) and the Representative Concentrations Pathways (post-2005) of the Intergovernmental Panel on Climate Change (IPCC)’s 5th Assessment Report, may be helpful to policy-makers and managers who are developing regional adaptation strategies for ocean acidification.

The published paper is available here: https://www.nature.com/articles/s41598-019-55039-4

The data product is available here: https://www.nodc.noaa.gov/oads/data/0206289.xml

 

Authors:
Li-Qing Jiang (University of Maryland and NOAA NCEI)
Brendan Carter (NOAA PMEL and University of Washington JISAO)
Richard Feely (NOAA PMEL)
Siv Lauvset, Are Olsen (University of Bergen and Bjerknes Centre for Climate Research, Norway)

Unexpected DOC additions in the deep Atlantic

Posted by mmaheigan 
· Tuesday, January 7th, 2020 

Oceanic dissolved organic carbon (DOC) ultimately exchanges with atmospheric CO2 and thus represents an important carbon source/sink with consequence for climate. Most of the DOC is recalcitrant to microbial degradation, with some fractions surviving for thousands of years. Therefore, DOC in the deep ocean was thought to be stable or to decrease slowly over decades to centuries due to biotic and abiotic sinks. However, a study published in Global Biogeochemical Cycles shows that there are some zones of the deep Atlantic Ocean where recalcitrant DOC experiences net production. Using data from oceanographic cruises across the Atlantic Ocean, the authors first identified the major water masses in the basin and the percentage of each in every sample taken for DOC analysis. The study revealed net additions of 27 million tons of dissolved organic carbon per year in the deep South Atlantic. On the other hand, the North Atlantic serves as a net sink, removing 298 million tons of carbon annually. DOC production observed in the deep Atlantic is probably due to the sinking particles that solubilize into DOC, since DOC enrichment was most evident at latitudes characterized as elevated productivity divergence zones.

Figure 1. Water masses along GO-SHIP line A16 (colored dots) and recalcitrant DOC variations due to biogeochemical processes (black dots within each water mass) in the deep Atlantic Ocean. Water mass domains are defined as the set of samples with the corresponding water mass proportion ≥50%. Recalcitrant DOC latitudinal variations per water stratum due to biogeochemical processes (ΔDOC) is in μmol kg-1. Numbers on the plots are DOC values for the corresponding dots. Scales (not shown) are the same for all the plots, from -4 to 6 μmol kg-1. Positive (negative) ΔDOC indicates values higher (lower) than the average DOC calculated for each water mass using an optimum multiparameter (OMP) analysis. DOC = dissolved organic carbon. AAIW = Antarctic Intermediate Water; UNADW = upper North Atlantic Deep Water; ISOW = Iceland Scotland Overflow Water; CDW = Circumpolar Deep Water; WSDW = Weddell Sea Deep Water. Figure created with Ocean Data View (Schlitzer, 2015).

Considering that the net DOC production over the entire Atlantic basin euphotic zone is 0.70–0.75 Pg C year-1, the authors estimated that 30–39% of that DOC is consumed in the deep Atlantic subsequent to its export by overturning circulation. The upper North Atlantic Deep Water (UNADW) acts as the primary sink, accounting for 66% of the recalcitrant DOC removal in the North Atlantic. Conversely, the Antarctic Intermediate Water (AAIW) is the primary recipient, with 45% of recalcitrant DOC production in the South Atlantic, closely followed by the old UNADW that gains 44% of the recalcitrant DOC in the southern basin.

The Atlantic works as a mosaic of water masses, where both removal and addition of recalcitrant DOC occurs, with the dominant term dependent on the origin, temperature, age and depth of the water masses. The production of recalcitrant DOC in the deep ocean should be considered in biogeochemical models dealing with the carbon cycle and climate.

Authors:
C. Romera-Castillo and J. L. Pelegrí (Instituto de Ciencias del Mar, CSIC, Spain)
M. Álvarez (Instituto Español de Oceanografía, Spain)
D. A. Hansell (University of Miami, USA)
X. A. Álvarez-Salgado (Instituto de Investigaciones Marinas, CSIC, Spain)

What really controls deep-seafloor calcite dissolution?

Posted by mmaheigan 
· Monday, December 16th, 2019 

On time scales of tens to millions of years, seawater acidity is primarily controlled by biogenic calcite (CaCO3) dissolution on the seafloor. Our quantitative understanding of future oceanic pH and carbonate system chemistry requires knowledge of what controls this dissolution. Past experiments on the dissolution rate of suspended calcite grains have consistently suggested a high-order, nonlinear dependence on undersaturation that is independent of fluid flow rate. This form of kinetics has been extensively adopted in models of deep-sea calcite dissolution and pH of benthic sediments. However, stirred-chamber and rotating-disc dissolution experiments have consistently demonstrated linear kinetics of dissolution and a strong dependence on fluid flow velocity. This experimental discrepancy surrounding the kinetic control of seafloor calcite dissolution precludes robust predictions of oceanic response to anthropogenic acidification.

In a recent study published in Geochimica et Cosmochimica Acta, authors have reconciled these divergent experimental results through an equation for the mass balance of the carbonate ion at the sediment-water interface (SWI), which equates the rate of production of that ion via dissolution and its diffusion in sediment porewaters to the transport across the diffusive sublayer (DBL) at the SWI. If the rate constant derived from suspended-grain experiments is inserted into this balance equation, the rate of carbonate ion supply to the SWI from the sediment (sediment-side control) is much greater in the oceans than the rate of transfer across the DBL (water-side control). Thus, calcite dissolution at the seafloor, while technically under mixed control, is strongly water-side dominated. Consequently, a model that neglects boundary-layer transport (sediment-side control alone) invariably predicts CaCO3-versus-depth profiles that are too shallow compared to available data (Figure 1). These new findings will inform future attempts to model the ocean’s response to acidification.

Figure 1: Plots of the calcite (CaCO3) content of deep-sea sediments as a function of oceanic depth. Left panel: data from the Northwestern Atlantic Ocean. Right panel: data from the Southwest Pacific Ocean. The blue line represents predicted CaCO3 content assuming no boundary-layer effects (pure sediment-side control). The red line is the prediction that includes both sediment and water effects (mixed control), and the green line is the prediction with pure water-side control. The agreement between the red and green lines signifies that calcite dissolution is essentially water-side controlled at the seafloor. These results are duplicated for all tested regions of the oceans.

Authors:
Bernard P. Boudreau (Dalhousie University)
Olivier Sulpis (University of Utrecht)
Alfonso Mucci (McGill University)

The ecology of the biological carbon pump

Posted by mmaheigan 
· Tuesday, October 15th, 2019 

Plankton in the surface ocean convert CO2 into organic biomass thereby fueling marine food webs. Part of this organic biomass sinks down into the deep ocean, where the surface-derived organic carbon, or respired CO2, is locked in for decades to millennia. Without the biological carbon pump, atmospheric CO2 would be ~200 ppm higher than it is today. We know that ecological processes in the surface ocean plankton communities have a paramount importance on the efficiency of the biological carbon pump. Unfortunately, however, the mechanisms how ecology determines sinking fluxes are poorly understood.

A recent study in Global Biogeochemical Cycles used large-scale in situ mesocosms to explore how the ecological interplay within plankton communities affects the downward flux of organic material. Organic biomass tends to sink faster when produced by smaller organisms because the sinking material they generate forms dense aggregates. Conversely, larger organisms produce relatively porous particles that sink more slowly.

Figure: Flow chart illustrating how plankton community structure affects the properties of sinking organic particles and ultimately the strength and efficiency of the biological carbon pump. The thick arrows at the bottom indicate that flux attenuation depends on the properties of particulate matter formed in the surface ocean. For example, slow-sinking porous aggregates containing large amounts of easily degradable organic substances will decay faster (right side) than dense aggregates of more refractory organic matter (left side).

The key finding of this study was the unexpectedly large influence that plankton community composition has on the degradation rate of sinking organic biomass. In fact, degradation rates changed maximally 15-fold over the course of the study while sinking speed changed only 3-fold. Degradation rate of sinking material, measured in oxygen consumption assays, was quite variable and tended to be higher for more easily degradable fresh organic matter. The rate was lower during harmful algal blooms, which produce toxic substances that inhibit organisms that feed on aggregates thereby reducing degradation rates. These findings are an important step forward as they show that our predictive understanding of the biological carbon pump could be improved substantially when linking degradation rates of sinking material with ecological processes in surface ocean plankton communities.

Authors:
L. T. Bach (University of Tasmania)
P. Stange, J. Taucher, E. P. Achterberg, M. Esposito, U. Riebesell (GEOMAR)
M. Algueró‐Muñiz (Alfred-Wegener-Institut Helmholtz)
H. Horn (NIOZ and Utrecht University)

Industrial era climate forcing drives multi-century decline in North Atlantic productivity

Posted by mmaheigan 
· Wednesday, October 2nd, 2019 

Phytoplankton respond directly to climate forcing, and due to their central role in global oxygen production and atmospheric carbon sequestration, they are critical components of the Earth’s climate system. There are however few observations detailing past variability in marine primary productivity, particularly over multi-decadal to centennial timescales. This limits our understanding of the long-term impact of climatic forcing on both past and future marine productivity.

Multi-century decline of subarctic Atlantic productivity. From top: standardized (z-score units relative to ad 1958-2016) indices of Continuous Plankton Recorder (CPR)-based diatom, dinoflagellate and coccolithophore relative-abundances; North Atlantic [chlorophyll-α] reconstruction from Boyce et al. (2010, Nature); ice core-based [MSA] PC1 productivity index. The “Industrial Onset” range shows the estimated initiation of declining subarctic Atlantic productivity; reconstructed (Rahmstorf et al., 2015, Nat. Clim. Change) and observed sea-surface temperature-based Atlantic Meridional Overturning Circulation (i.e., AMOC) index, alongside 5-year averaged subarctic Atlantic freshwater storage anomalies (relative to A.D. 1955) from Curry and Mauritzen (2005; Science).

Authors of a new study published in Nature used a high-resolution signal of marine biogenic aerosol emissions (methanesulfonic acid, or “MSA”) preserved within twelve Greenland ice cores to reconstruct a ~250-year record of marine productivity variations across the subarctic Atlantic basin, one of the most biologically productive and climatically sensitive regions on Earth. These results provide the most continuous proxy-based reconstruction of basin-scale productivity to date in this region, illuminating the following major findings: (1) subarctic Atlantic marine productivity has declined over the industrial era by as much as 10 ± 7%; (2) the early 19th century onset of declining productivity coincides with the regional onset of industrial-era surface warming, and also strongly covaries with regional sea surface temperatures and basin-scale gyre circulation strength; (3) there is strong decadal- to centennial-scale coherence between northern Atlantic productivity variability and declining Atlantic Meridional Overturning Circulation (AMOC) strength, as predicted by prior model-based studies.

Future atmospheric warming is predicted to contribute to accelerating Greenland Ice Sheet runoff, ocean-surface freshening, and AMOC slowdown, suggesting the potential for continued declines in productivity across this dynamic and climatically important region. Such declines will, in turn, have important implications for future maritime economies, global food security, and drawdown of atmospheric carbon dioxide.

 

Authors:
Matthew Osman (Massachusetts Institute of Technology)
Sarah Das (Woods Hole Oceanographic Institution)
Luke Trusel (Rowan University)
Matthew Evans (Wheaton College)
Hubertus Fischer (University of Bern)
Mackenzie Griemann (University of California, Irvine)
Sepp Kipfstuhl (Alfred-Wegener-Institute)
Joseph McConnell (Desert Research Institute)
Eric Saltzman (University of California, Irvine)

 

Figure references:
Boyce, D. G., Lewis, M. R. & Worm, B. (2010) Global phytoplankton decline over the past century. Nature 466, 591–596.

Curry, R. & Mauritzen, C. (2005) Dilution of the northern North Atlantic Ocean in recent decades. Science 308, 1772–1774.

Rahmstorf, S. et al. (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480.

Upwelling and solubility drive global surface dissolved inorganic carbon (DIC) distribution

Posted by mmaheigan 
· Tuesday, August 20th, 2019 

What drives the latitudinal gradient in open-ocean surface DIC concentration? Understanding the processes that drive the distribution of carbon in the surface ocean is essential to the study of the ocean carbon cycle and future predictions of ocean acidification and the ocean carbon sink.

Authors of a recent study in Biogeosciences investigated causes of the observed latitudinal trend in DIC and salinity-normalized DIC (nDIC) (Figure 1). The latitudinal trend in nDIC is not driven solely by the latitudinal gradient in temperature (through its effects on solubility), as is commonly assumed. Careful analysis using the Global Ocean Data Analysis Project version 2 (GLODAPv2) database revealed that physical supply from below (upwelling, entrainment in winter) at high latitudes is another major driver of the latitudinal pattern. The contribution of physical exchange explains an otherwise puzzling observation: Surface waters are lower in nDIC in the high-latitude North Atlantic than in other basins. This cannot be accounted for by temperature difference but rather is explained by a difference in the carbon content of deeper waters (lower in the subarctic North Atlantic than in the subarctic North Pacific or Southern Ocean) that are mixed up into the surface during winter months.

Figure caption: (Top) spatial distributions of surface ocean DIC and (bottom) salinity-normalised (nDIC). Both, most notably nDIC, increase towards the poles. Values are normalised to year 2005 to remove bias from changing levels of atmospheric CO2 in some observations before and after 2005. Data are from GLODAPv2.

These results also suggest that the upwelling/entrainment of water that is high in alkalinity generates a large and long-lasting effect on DIC, one that persists beyond the timescale of CO2 gas exchange equilibration with the . That is to say, the impact of changes in upwelling on the ocean’s carbon source-sink strength depends not only on the DIC content of the upwelled water but also on its TA content.

Authors:
Yingxu Wu (University of Southampton)
Mathis Hain (University of California, Santa Cruz)
Matthew Humphreys (University of East Anglia and University of Southampton)
Sue Hartman (National Oceanography Centre, Southampton)
Toby Tyrrell (University of Southampton)

Regional circulation changes and a growing atmospheric CO2 concentration drive accelerated anthropogenic carbon uptake in the South Pacific

Posted by mmaheigan 
· Tuesday, August 6th, 2019 

About one tenth of human CO2 emissions are currently being taken up by the Pacific Ocean, which makes the seawater more corrosive to the calcium carbonate shells and skeletons of the plants and animals that live there. Now, thanks to hard work by international teams of scientists from the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP), there are decades of data, enough to test how much this anthropogenic CO2 accumulation varies throughout the Pacific Ocean and regionally on the timescales of decades.

 

Figure caption: Map of the concentration of human-emitted CO2 along the sections where data were available from more than one decade, estimated for the year 2015.

Using a new take on an old technique, along with a wide variety of repeat biogeochemical measurements, a study in Biogeochemical Cycles revealed that Pacific anthropogenic CO2 accumulation increased from the 1995-2005 decade to the 2005-2015 decade. While the magnitude of the decadal increase was consistent with increases in human CO2 emissions over this period for most of the Pacific, the rate of change was greater than expected in the South Pacific subtropical gyre. The authors suggest that recent increases in circulation in the gyre region could have delivered an unexpectedly large amount of anthropogenic CO2-laden seawater from the surface to the ocean interior. Programs like GO-SHIP will continue to be critical for tracking the fate of human CO2 emissions and associated feedbacks on climate and marine ecosystems.

 

Authors:
B. R. Carter (Univ. Washington and PMEL)
R. A. Feely, G. C. Johnson, J. L. Bullister (PMEL)
R. Wanninkhof (NOAA AOML)
S. Kouketsu, A. Murata (JAMSTEC
R. E. Sonnerup, S. Mecking (Univ. Washington)
P. C. Pardo (Univ. Tasmania)
C. L. Sabine (Univ. Hawai‘i, Mānoa)
B. M. Sloyan, B. Tilbrook (CSIRO, Australia)
K. Speer (Florida State University
L. D. Talley (Scripps Institution of Oceanography)
F. J. Millero (Univ. Miami)
S. E. Wijffels (CSIRO and WHOI)
A. M. Macdonald (WHOI)
N. Gruber (ETH Zurich)

A new era of observing the ocean carbonate system

Posted by mmaheigan 
· Tuesday, August 6th, 2019 

Amidst a backdrop of natural variability, the ocean carbonate system is undergoing a massive anthropogenic change. To capture this anthropogenic signal and differentiate it from natural variability, carbonate observations are needed across a range of spatial and temporal scales (Figure 1), many of which are not captured by traditional oceanographic platforms. A new review of autonomous carbonate observations published in Current Climate Change Reports highlights the development and deployment of pH sensors capable of in situ measurements on autonomous platforms, which represents a major step forward in observing the ocean carbonate system. These sensors have been rigorously field-tested via large-scale deployments on profiling floats in the Southern Ocean (Southern Ocean Carbon and Climate Observations and Modeling, SOCCOM), providing an unprecedented wealth of year-round data that have demonstrated the importance of wintertime outgassing of carbon dioxide in the Southern Ocean.

Figure 1: Observational capabilities and carbonate system processes as a function of time and space. Ocean processes that affect the carbonate system (solid color shapes—labeled in the legend) are depicted as a function of the temporal and spatial scales over which they must be observed to capture important variability and/or long-term change.

Most current autonomous platforms routinely measure only a single carbonate parameter, which then requires an algorithm to estimate a second parameter so that the rest of the carbonate system can be calculated. However, the ongoing development of sensors and systems to measure, rather than estimate, other carbonate parameters may greatly reduce uncertainty in constraining the full carbonate system. It is critical that the community continue to develop and adhere to best practices for calibration and data handling as existing sensors are deployed in increasing numbers and new sensors become available. Expanding autonomous carbonate measurements will increase our understanding of how anthropogenic change impacts natural variability and will provide a means to monitor carbon uptake by the ocean in real-time at high spatial and temporal resolution. This will not only help to understand the mechanisms driving changes in the ocean carbonate system, but will allow new insights in the role of mesoscale processes in regional and global biogeochemical cycles.

 

Authors:
Seth M. Bushinsky (Princeton University/University of Hawai’i Mānoa)
Yuichiro Takeshita (Monterey Bay Aquarium Research Institute)
Nancy L. Williams (Pacific Marine Environmental Laboratory – NOAA / University of South Florida)

Deep ocean carbon reconstruction helps decipher a million-year-old climate mystery

Posted by mmaheigan 
· Tuesday, July 23rd, 2019 

Approximately one million years ago, Earth’s periodic ice ages increased in strength and duration, shifting from a 41,000-year pacing to a 100,000-year pacing, both linked to Earth’s orbital variations. The causes of this climate shift known as the mid-Pleistocene transition (MPT) have been debated for decades.

A recent study in Nature Geoscience addresses how the ocean carbon cycle contributed to the MPT by quantifying the carbon inventory of the deep Atlantic Ocean during this time. Using trace element and isotope ratios of fossil marine foraminifera, the authors demonstrate that an abrupt weakening of deep ocean overturning circulation between 950,000 and 900,000 years ago occurred alongside a pronounced increase in carbon content of the deep Atlantic Ocean. This study revealed significantly higher carbon concentrations in the deep North and South Atlantic basins during the post-MPT 100,000-year ice ages relative to the 41,000-year ice ages prior to the MPT (Figure 1).

Figure 1 caption: The last two million years of glacial cycles, with present day on left and age increasing from left to right. Orange data are from 41,000-year ice ages; blue data are from,100,000-year ice ages. (A) Glacial-interglacial cycles demonstrated in benthic oxygen isotopes (green), with warmer interglacials up and peak ice ages downward. (B) Atmospheric CO2 from ice core measurements (gray lines) and reconstructed from boron isotopes (circles) (C), Peak ice age neodymium isotope ratios indicating strength of density-driven deep ocean circulation (squares and triangles indicate two different sediment cores). (D) Peak ice age deep ocean carbon content (squares and diamonds indicate two independent reconstructions from the same South Atlantic sediment core).

These data indicate that since 950,000 years ago, the deep Atlantic Ocean has stored an extra 50 billion tons of carbon during peak ice ages. This study hypothesizes that this extra carbon was sequestered from the atmosphere via a feedback between Antarctic ice sheet extent and the efficiency of air-sea carbon exchange in the Southern Ocean. The authors propose that intensification of ice ages one million years ago was closely linked to enhanced ocean carbon storage and resultant lowering of atmospheric CO2 levels.

While paleoclimatologists consider the MPT to be the most recent major climate transition, the magnitude of carbon perturbation at the MPT pales in comparison to today’s human emissions. Today, humans produce 50 billion tons of carbon in only five years. Studies of the carbon cycle across past climate transitions like the MPT provide key insights on how future climate may respond to today’s carbon cycle disruption.

 

Authors
Jesse Farmer (LDEO Columbia University; now at Princeton University and Max Planck Institute for Chemistry)
Bärbel Hönisch, Laura Haynes, Maureen Raymo, Steven Goldstein, Maayan Yehudai, Joohee Kim (LDEO Columbia University)
Heather Ford (Queen Mary University of London)
Dick Kroon, Simon Jung, Dave Bell (University of Edinburgh)
Maria Jaume-Seguí, Leopoldo Pena (University of Barcelona)

 

See this related popular article and video in the Washington Post.

« Previous Page
Next Page »

Filter by Keyword

abundance acidification additionality advection africa air-sea air-sea interactions algae alkalinity allometry ammonium AMO AMOC anoxic Antarctic Antarctica anthro impacts anthropogenic carbon anthropogenic impacts appendicularia aquaculture aquatic continuum aragonite saturation arctic Argo argon arsenic artificial seawater AT Atlantic atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms AUVs bacteria bathypelagic BATS BCG Argo benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biophysics bloom blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon carbon-climate feedback carbon-sulfur coupling carbonate carbonate system carbon budget carbon cycle carbon dioxide carbon export carbon fluxes carbon sequestration carbon storage Caribbean CCA CCS changing marine chemistry changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemical speciation chemoautotroph chesapeake bay chl a chlorophyll circulation clouds CO2 CO3 coastal and estuarine coastal darkening coastal ocean cobalt Coccolithophores commercial community composition competition conservation cooling effect copepod copepods coral reefs CTD currents cyclone daily cycles data data access data assimilation database data management data product Data standards DCM dead zone decadal trends decomposers decomposition deep convection deep ocean deep sea coral denitrification deoxygenation depth diatoms DIC diel migration diffusion dimethylsulfide dinoflagellate dinoflagellates discrete measurements distribution DOC DOM domoic acid DOP dust DVM ecology economics ecosystem management ecosystems eddy Education EEZ Ekman transport emissions ENSO enzyme equatorial current equatorial regions ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export export fluxes export production extreme events faecal pellets fecal pellets filter feeders filtration rates fire fish Fish carbon fisheries fishing floats fluid dynamics fluorescence food webs forage fish forams freshening freshwater frontal zone functional role future oceans gelatinous zooplankton geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas greenhouse gases Greenland ground truthing groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact human well-being hurricane hydrogen hydrothermal hypoxia ice age ice cores ice cover industrial onset inland waters in situ inverse circulation ions iron iron fertilization iron limitation isotopes jellies katabatic winds kelvin waves krill kuroshio lab vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids low nutrient machine learning mangroves marine carbon cycle marine heatwave marine particles marine snowfall marshes mCDR mechanisms Mediterranean meltwater mesopelagic mesoscale mesoscale processes metagenome metals methane methods microbes microlayer microorganisms microplankton microscale microzooplankton midwater mitigation mixed layer mixed layers mixing mixotrophs mixotrophy model modeling model validation mode water molecular diffusion MPT MRV multi-decade n2o NAAMES NCP nearshore net community production net primary productivity new ocean state new technology Niskin bottle nitrate nitrogen nitrogen cycle nitrogen fixation nitrous oxide north atlantic north pacific North Sea NPP nuclear war nutricline nutrient budget nutrient cycles nutrient cycling nutrient limitation nutrients OA observations ocean-atmosphere ocean acidification ocean acidification data ocean alkalinity enhancement ocean carbon storage and uptake ocean carbon uptake and storage ocean color ocean modeling ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles oscillation outwelling overturning circulation oxygen pacific paleoceanography PAR parameter optimization parasite particle flux particles partnerships pCO2 PDO peat pelagic PETM pH phenology phosphate phosphorus photosynthesis physical processes physiology phytoplankton PIC piezophilic piezotolerant plankton POC polar polar regions policy pollutants precipitation predation predator-prey prediction pressure primary productivity Prochlorococcus productivity prokaryotes proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satellite scale seafloor seagrass sea ice sea level rise seasonal seasonality seasonal patterns seasonal trends sea spray seawater collection seaweed secchi sediments sensors sequestration shelf ocean shelf system shells ship-based observations shorelines siderophore silica silicate silicon cycle sinking sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST state estimation stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus technology teleconnections temperate temperature temporal covariations thermocline thermodynamics thermohaline thorium tidal time-series time of emergence titration top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trawling Tris trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport warming water clarity water mass water quality waves weathering western boundary currents wetlands winter mixing zooplankton

Copyright © 2025 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.