Ocean Carbon & Biogeochemistry
Studying marine ecosystems and biogeochemical cycles in the face of environmental change
  • Home
  • About OCB
    • About Us
    • Get Involved
    • Project Office
    • Code of Conduct
    • Scientific Steering Committee
    • OCB committees
      • Ocean Time-series
      • US Biogeochemical-Argo
      • Ocean-Atmosphere Interaction
    • Scientific Breadth
      • Biological Pump
      • Changing Marine Ecosystems
      • Changing Ocean Chemistry
      • Estuarine and Coastal Carbon Fluxes
      • Ocean Carbon Uptake and Storage
      • Ocean Observatories
  • Activities
    • OCB Webinar Series
    • Summer Workshops
    • Scoping Workshops
      • Ecological Forecasting – North American Coastlines
      • Expansion of BGC-Argo and Profiling Floats
      • Future BioGeoSCAPES program
      • Ocean-Atmosphere Interactions
      • Oceanic Methane & Nitrous Oxide
    • Other Workshops
      • GO-BCG Scoping Workshop
    • Science Planning
      • Coastal CARbon Synthesis (CCARS)
      • North Atlantic-Arctic
    • Ocean Acidification PI Meetings
    • Training Activities
      • PACE Training Activity
  • Small Group Activities
    • Aquatic Continuum OCB-NACP Focus Group
    • Arctic-COLORS Data Synthesis
    • Carbon Isotopes in the Ocean Workshop
    • CMIP6 WG
      • CMIP6 Models Workshop
    • C-saw extreme events workshop
    • Filling the gaps air–sea carbon fluxes WG
    • Fish Carbon WG
      • Fish Carbon WG Workshop
      • Fish carbon workshop summary
    • Lateral Carbon Flux in Tidal Wetlands
    • Marine carbon dioxide removal
      • Marine CDR Workshop
    • Metaproteomic Intercomparison
    • Mixotrophs & Mixotrophy WG
    • N-Fixation WG
    • Ocean Carbonate System Intercomparison Forum
    • Ocean Carbon Uptake WG
    • Ocean Nucleic Acids ‘Omics
    • OOI BGC sensor WG
    • Phytoplankton Taxonomy WG
  • Science Support
    • Data management and archival
    • Early Career
    • Funding Sources
    • Jobs & Postdocs
    • Meeting List
    • OCB topical websites
      • Ocean Fertilization
      • Trace gases
      • US IIOE-2
    • Outreach & Education
    • Promoting your science
    • Student Opportunities
    • OCB Activity Proposal Solicitations
    • Travel Support
  • Publications
    • Ocean Carbon Exchange
    • Newsletter Archive
    • Science Planning and Policy
    • OCB Workshop Reports
  • OCB Science Highlights
  • News

Archive for phytoplankton – Page 2

Tiny phytoplankton seen from space

Posted by mmaheigan 
· Thursday, November 19th, 2020 

Picophytoplankton, the smallest phytoplankton on Earth, are dominant in over half of the global surface ocean, growing in low-nutrient “ocean deserts” where diatoms and other large phytoplankton have difficult to thrive. Despite their small size, picophytoplankton collectively account for well over 50% of primary production in oligotrophic waters, thus playing a major role in sustaining marine food webs.

In a recent paper published in Optics Express, the authors use satellite-detected ocean color (namely remote-sensing reflectance, Rrs(λ)) and sea surface temperature to estimate the abundance of the three picophytoplankton groups—the cyanobacteria Prochlorococcus and Synechococcus, and autotrophic picoeukaryotes. The authors analysed Rrs(λ) spectra using principal component analysis, and principal component scores and SST were used in the predictive models. Then, they trained and independently evaluated the models with in-situ data from the Atlantic Ocean (Atlantic Meridional Transect cruises). This approach allows for the satellite detection of the succession of species across ocean oligotrophic ecosystem boundaries, where these cells are most abundant (Figure 1).

Figure 1. Cell abundances of the three major picophytoplankton groups (the cyanobacteria Prochlorococcus and Synechococcus, and a collective group of autotrophic picoeukaryotes) in surface waters of the Atlantic Ocean. Abundances are shown for the dominant group in terms of total biovolume (converted from cell abundance).

Since these organisms can be used as proxies for marine ecosystem boundaries, this method can be used in studies of climate and ecosystem change, as it allows a synoptic observation of changes in picophytoplankton distributions over time and space. For exploring spectral features in hyperspectral Rrs(λ) data, the implementation of this model using data from future hyperspectral satellite instruments such as NASA PACE’s Ocean Color Instrument (OCI) will extend our knowledge about the distribution of these ecologically relevant phytoplankton taxa. These observations are crucial for broad comprehension of the effects of climate change in the expansion or shifts in ocean ecosystems.

 

Authors:
Priscila K. Lange (NASA Goddard Space Flight Center / Universities Space Research Association / Blue Marble Space Institute of Science)
Jeremy Werdell (NASA Goddard Space Flight Center)
Zachary K. Erickson (NASA Goddard Space Flight Center)
Giorgio Dall’Olmo (Plymouth Marine Laboratory)
Robert J. W. Brewin (University of Exeter)
Mikhail V. Zubkov (Scottish Association for Marine Science)
Glen A. Tarran (Plymouth Marine Laboratory)
Heather A. Bouman (University of Oxford)
Wayne H. Slade (Sequoia Scientific, Inc)
Susanne E. Craig (NASA Goddard Space Flight Center / Universities Space Research Association)
Nicole J. Poulton (Bigelow Laboratory for Ocean Sciences)
Astrid Bracher (Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research / University of Bremen)
Michael W. Lomas (Bigelow Laboratory for Ocean Sciences)
Ivona Cetinić (NASA Goddard Space Flight Center / Universities Space Research Association)

 

Marine heatwave implications for future phytoplankton blooms

Posted by mmaheigan 
· Thursday, October 15th, 2020 

Ocean temperature extreme events such as marine heatwaves are expected to intensify in coming decades due to anthropogenic warming. Although the effects of marine heatwaves on large plants and animals are becoming well documented, little is known about how these warming events will impact microbes that regulate key biogeochemical processes such as ocean carbon uptake and export, which represent important feedbacks on the global carbon cycle and climate.

Figure caption: Relationship between phytoplankton bloom response to marine heatwaves and background nitrate concentration in the 23 study regions. X-axis denotes the annual-mean sea-surface nitrate concentration based on the model simulation (1992-2014; OFAM3, blue) and the in situ climatology (WOA13, orange). Y-axis denotes the mean standardised anomalies (see Equation 1 of the paper) of simulated sea-surface phytoplankton nitrogen biomass (1992-2014; OFAM3, blue) and observed sea-surface chlorophyll a concentration (2002-2018; MODIS, orange) during the co-occurrence of phytoplankton blooms and marine heatwaves.

In a recent study published in Global Change Biology, authors combined model simulations and satellite observations in tropical and temperate oceanographic regions over recent decades to characterize marine heatwave impacts on phytoplankton blooms. The results reveal regionally‐coherent anomalies depicted by shallower surface mixed layers and lower surface nitrate concentrations during marine heatwaves, which counteract known light and nutrient limitation effects on phytoplankton growth, respectively (Figure 1). Consequently, phytoplankton bloom responses are mixed, but derive from the background nutrient conditions of a study region such that blooms are weaker (stronger) during marine heatwaves in nutrient-poor (nutrient-rich) waters.

Given the projected expansion of nutrient-poor waters in the 21st century ocean, the coming decades are likely to see an increased occurrence of weaker blooms during marine heatwaves, with implications for higher trophic levels and biogeochemical cycling of key elements.

Authors:
Hakase Hayashida (University of Tasmania)
Richard Matear (CSIRO)
Pete Strutton (University of Tasmania)

Profiling floats reveal fate of Southern Ocean phytoplankton stocks

Posted by mmaheigan 
· Tuesday, September 1st, 2020 

More observations are needed to constrain the relative roles of physical (advection), biogeochemical (downward export), and ecological (grazing and biological losses) processes in driving the fate of phytoplankton blooms in Southern Ocean waters. In a recent paper published in Nature Communications, authors used seven Biogeochemical Argo (BGC-Argo) floats that vertically profiled the upper ocean every ten days as they drifted for three years across the remote Sea Ice Zone of the Southern Ocean. Using the floats’ biogeochemical sensors (chlorophyll, nitrate, and backscattering) and regional ratios of nitrate consumption:chlorophyll synthesis, the authors developed a new approach to remotely estimate the fate of the phytoplankton stocks, enabling calculations of herbivory and of downward carbon export. The study revealed that the major fate of phytoplankton biomass in this region is grazing, which consumes ~90% of stocks. The remaining 10% is exported to depth. This pattern was consistent throughout the entire sea ice zone where the floats drifted, from 60°-69° South.

Figure Caption: Southern Ocean Chlorophyll a climatology and floats’ trajectories (top panel). Total losses of Chlorophyll a (including grazing and phytodetritus export, left panel). Phytodetritus export (right panel).

 

This study region comprises two of the three major krill growth and development areas—the eastern Weddell and King Haakon VII Seas and Prydz Bay and the Kerguelen Plateau—so the observed grazing was probably due to Antarctic krill, underscoring their pivotal importance in this ecosystem. Building upon the greater understanding of ocean ecosystems via satellite ocean colour development in the 1990s, BGC-Argo floats and this new approach will allow remote monitoring of the different fates of phytoplankton stocks and insights into the status of the ecosystem.

 

Authors:
Sebastien Moreau (Norwegian Polar Institute, Tromsø, Norway)
Philip Boyd (Institute for Marine and Antarctic Studies, Hobart, Australia)
Peter Strutton (Institute for Marine and Antarctic Studies, Hobart, Australia)

A close-up view of biomass controls in Southern Ocean eddies

Posted by mmaheigan 
· Thursday, August 20th, 2020 

Southern Ocean biological productivity is instrumental in regulating the global carbon cycle. Previous correlative studies associated widespread mesoscale activity with anomalous chlorophyll levels. However, eddies simultaneously modify both the physical and biogeochemical environments via several competing pathways, making it difficult to discern which mechanisms are responsible for the observed biological anomalies within them. Two recently published papers track Southern Ocean eddies in a global, eddy-resolving, 3-D ocean simulation. By closely examining eddy-induced perturbations to phytoplankton populations, the authors are able to explicitly link eddies to co-located biological anomalies through an underlying mechanistic framework.

Figure caption: Simulated Southern Ocean eddies modify phytoplankton division rates in different directions of depending on the polarity of the eddy and background seasonal conditions. During summer anticyclones (top right panel) deliver extra iron from depth via eddy-induced Ekman pumping and fuel faster phytoplankton division rates. During winter (bottom right panel) the extra iron supply is eclipsed by deeper mixed layer depths and elevated light limitation resulting in slower division rates. The opposite occurs in cyclones.

In the first paper, the authors observe that eddies primarily affect phytoplankton division rates by modifying the supply of iron via eddy-induced Ekman pumping. This results in elevated iron and faster phytoplankton division rates in anticyclones throughout most of the year. However, during deep mixing winter periods, exacerbated light stress driven by anomalously deep mixing in anticyclones can dominate elevated iron and drive division rates down. The opposite response occurs in cyclones.

The second paper tracks how eddy-modified division rates combine with eddy-modified loss rates and physical transport to produce anomalous biomass accumulation. The biomass anomaly is highly variable, but can exhibit an intense seasonal cycle, in which cyclones and anticyclones consistently modify biomass in different directions. This cycle is most apparent in the South Pacific sector of the Antarctic Circumpolar Current, a deep mixing region where the largest biomass anomalies are driven by biological mechanisms rather than lateral transport mechanisms such as eddy stirring or propagation.

It is important to remember that the correlation between chlorophyll and eddy activity observable from space can result from a variety of physical and biological mechanisms. Understanding the nuances of how these mechanisms change regionally and seasonally is integral in both scaling up local observations and parameterizing coarser, non-eddy resolving general circulation models with embedded biogeochemistry.

Authors:
Tyler Rohr (Australian Antarctic Partnership Program, previously at MIT/WHOI)
Cheryl Harrison (University of Texas Rio Grande Valley)
Matthew Long (National Center for Atmospheric Research)
Peter Gaube (University of Washington)
Scott Doney (University of Virginia)

Multiyear predictions of ocean acidification in the California Current System

Posted by mmaheigan 
· Thursday, August 20th, 2020 

The California Current System is a highly productive coastal upwelling region that supports commercial fisheries valued at $6 billion/year. These fisheries are supported by upwelled waters, which are rich in nutrients and serve as a natural fertilizer for phytoplankton. Due to remineralization of organic matter at depth, these upwelled waters also contain large amounts of dissolved inorganic carbon, causing local conditions to be more acidic than the open ocean. This natural acidity, compounded by the dissolution of anthropogenic CO2 into coastal waters, creates corrosive conditions for shell-forming organisms, including commercial fishery species.

A recent study in Nature Communications showcases the potential for climate models to skillfully predict variations in surface pH—thus ocean acidification—in the California Current System. The authors evaluate retrospective predictions of ocean acidity made by a global Earth System Model set up similarly to a weather forecasting system. The forecasting system can already predict variations in observed surface pH fourteen months in advance, but has the potential to predict surface pH up to five years in advance with better initializations of dissolved inorganic carbon (Figure 1). Skillful predictions are mostly driven by the model’s initialization and subsequent transport of dissolved inorganic carbon throughout the North Pacific basin.

Figure 1. Forecast of annual surface pH anomalies in the California Current Large Marine Ecosystem for 2020. Red colors denote anomalously basic conditions for the given location and blue colors indicate anomalously acidic conditions.

These results demonstrate, for the first time, the feasibility of using climate models to make multiyear predictions of surface pH in the California Current. Output from this global prediction system could serve as boundary conditions for high-resolution models of the California Current to improve prediction time scale and ultimately help inform management decisions for vulnerable and valuable shellfisheries.

 

Authors:
Riley X. Brady (University of Colorado Boulder)
Nicole S. Lovenduski (University of Colorado Boulder)
Stephen G. Yeager (National Center for Atmospheric Research)
Matthew C. Long (National Center for Atmospheric Research)
Keith Lindsay (National Center for Atmospheric Research)

Turning a spotlight on grazing

Posted by mmaheigan 
· Thursday, July 23rd, 2020 

Microscopic plankton in the surface ocean make planet Earth habitable by generating oxygen and forming the basis of marine food webs, yielding harvestable protein. For over 100 years, oceanographers have tried to ascertain the physical, chemical, and biological processes governing phytoplankton blooms. Zooplankton grazing of phytoplankton is the single largest loss process for primary production, but empirical grazing data are sparse and thus poorly constrained in modeling frameworks, including assessments of global elemental cycles, cross-ecosystem comparisons, and predictive efforts anticipating future ocean ecosystem function. As sunlight decays exponentially with depth, upper-ocean mixing creates dynamic light environments with predictable effects on phytoplankton growth but unknown consequences for grazing.

Figure caption: Rates (d−1) of phytoplankton growth (μ), grazing mortality (g), and biomass accumulation (r) under four mixed layer scenarios simulated using light as a proxy of (a) sustained deep mixing, (b) rapid shoaling, (c) sustained shallow mixing, and (d) rapid mixed layer deepening. Error bars represent one standard deviation of the mean of duplicate experiments. Grazing was measured but not detected in the sustained deep mixing and rapid shoaling conditions, denoted with x.

Using data from a spring cruise in the North Atlantic, authors of a recent study published in Limnology & Oceanography compared the influences of microzooplankton predation and fluctuations in light availability—representative of a mixing water column—on phytoplankton standing stock. Data from at-sea incubations and light manipulation experiments provide evidence that phytoplankton’s instantaneous and zooplankton’s delayed responses to light fluctuations are key modulators of the balance between phytoplankton growth and grazing rates (Figure 1). These results suggest that light is a potential, remotely retrievable predictor of when and where in the ocean zooplankton grazing may represent an important loss term of phytoplankton production. If broadly verified, this approach could be used to systematically assess sparsely measured grazing across spatial and temporal gradients in representative regions of the ocean. Such data will be essential for enhancing our predictive capacity of ocean food web function, global biogeochemical cycles and the many derived processes, including fisheries production and the flow of carbon through the oceans.

Authors:
Françoise Morison (University of Rhode Island)
Gayantonia Franzè (University of Rhode Island, currently Institute of Marine Research, Norway)
Elizabeth Harvey (University of Georgia, currently University of New Hampshire)
Susanne Menden-Deuer (University of Rhode Island)

 

Unexpected patterns of carbon export in the Southern Ocean

Posted by mmaheigan 
· Tuesday, July 7th, 2020 

The Southern Ocean is a major player in driving global distributions of heat, carbon dioxide, and nutrients, making it key to ocean chemistry and the earth’s climate system. In the ocean, biological production and export of organic carbon are commonly linked to places with high nutrient availability. A recent paper, published in Global Biogeochemical Cycles, highlighting new observations from robotic profiling floats demonstrates that areas of high carbon export in the Southern Ocean are actually associated with very low concentrations of iron, an important micronutrient for supporting phytoplankton growth. This suggests a decoupling between the production and export of organic carbon in this region.

Figure caption: (A) Meridional pattern of Annual Net Community Production (ANCP) (equivalent to carbon export) (± standard deviation) in the Southern Ocean (blue line with circles and shaded area), carbon export estimates from previous satellite-based analyses (blue dashed line), and silicate to nitrate (Si:NO3) ratio of the surface water (black continuous line). Grey dotted line shows a Si:NO3 = 1 mol mol−1, characteristic of nutrient-replete diatoms. (B) Meridional pattern of Southern Ocean nutrient concentrations, including dissolved iron (Fe) concentration (black line), nitrate (red line), and silicate (blue line). (C) Mean 2014–2015 annual zonally averaged air-sea flux of CO2 computed using neural network interpolation method. STF = Subtropical Front, PF = Antarctic Polar Front, SIF = Seasonal Ice Front.

Using observations of nutrient and oxygen drawdown from a regional network of profiling Biogeochemical-Argo floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM), the authors calculated estimates of Southern Ocean carbon export. A meridional pattern in biological carbon export emerged, showing peak export near the Antarctic Polar Front (PF) associated with minima in surface iron concentrations and dissolved silicate to nitrate ratios. Previous studies have shown that under iron-limiting conditions, diatoms increase their uptake ratio of silicate with respect to other nutrients (e.g., nitrogen), resulting in silicification. Here, the authors hypothesize that iron limitation promotes silicification in Southern Ocean diatoms, as evidenced by the low silicate to nitrate ratio of surface waters around the Antarctic Polar Front. High diatom silicification increases ballasting of particulate organic carbon and hence overall carbon export in this region. The resulting meridional pattern of organic carbon export is similar to that of the air-sea flux of carbon dioxide in the Southern Ocean, underscoring the importance of the biological carbon pump in controlling the spatial pattern of oceanic carbon uptake in this region.

Authors:
Lionel A. Arteaga (Princeton University)
Markus Pahlow (Helmholtz Centre for Ocean Research Kiel, GEOMAR)
Seth M. Bushinsky (University of Hawaii)
Jorge L. Sarmiento (Princeton University)

 

Autonomous platforms yield new insights on North Atlantic bloom phenology

Posted by mmaheigan 
· Wednesday, April 22nd, 2020 

Phytoplankton produces organic carbon, which serves as a major energy source in marine food webs and plays an important role in the global carbon cycle. Studies of phytoplankton seasonal timing (phenology) have been a major focus in oceanography, especially in the subpolar North Atlantic region, where massive increases in phytoplankton biomass (blooms) occur during the winter-spring transition.

Figure 1. Panel a: Each line represents the trajectory of a profiling Argo float deployed during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) expeditions (12 total); the initial float deployment location is denoted by a filled circle. The bar chart (inset right bottom) indicates float deployment durations. Panel b: Seasonal climatologies of Cphyto (green), µ (blue), l (red), and r (grey) from Argo floats for all 4 regions (D1-D4 as indicated on map in Panel a).

Many hypotheses based on data from shipboard discrete sampling or satellite remote sensing have been proposed to explain drivers of phytoplankton bloom formation and dynamics. However, discrete shipboard sampling limits both spatial and temporal coverage, and satellite approaches cannot provide direct information at depth. To address this gap in spatiotemporal coverage, a recent study in Frontiers in Marine Science, applied bio-optical measurements from 12 Argo profiling floats to study the year-round phytoplankton phenology in a north-south section of the western North Atlantic Ocean (40° N to 60° N). The authors calculated phytoplankton division rate (µ), loss rate (l), and carbon accumulation rate (r) using the Argo-based Chlorophyll-a (Chl) and phytoplankton carbon (Cphyto) estimates. Latitudinally varying phytoplankton dynamics were observed, with a higher (and later) Cphyto peak in the north, and stronger μ–r decoupling and increased proportion of winter to total annual production in the south (Figure 1). Seasonal phenology patterns arise from interactions between “bottom-up” (e.g., resources for growth) and “top-down” (e.g., grazing, mortality) factors that involve both biological and physical drivers. The Argo float data are consistent with the disturbance recovery hypothesis (DRH) over a full annual cycle. Float-based mixed layer phytoplankton phenology observations were comparable to satellite remote sensing observations. In a data-model comparison, outputs from an eddy-resolving ocean simulation only reproduced some of the observed phytoplankton phenology, indicating possible biases in the simulated physical forcing, turbulent dynamics, and biophysical interactions.

In addition to seasonal patterns in the mixed layer, float-based measurements provide information on the vertical distribution of physical and biogeochemical quantities and therefore are complementary to the satellite measurements. This powerful combination of observing assets enhances spatiotemporal coverage, thus enabling us to better observe, compare, model, and predict seasonal phytoplankton dynamics in the subpolar North Atlantic.

 

Authors:
Bo Yang (University of Virginia)
Emmanuel S. Boss (University of Maine)
Nils Haëntjens (University of Maine)
Matthew C. Long (National Center for Atmospheric Research)
Michael J. Behrenfeld (Oregon State University)
Rachel Eveleth (Oberlin College)
Scott C. Doney (University of Virginia)

Can phytoplankton help us determine ocean iron bioavailability?

Posted by mmaheigan 
· Wednesday, March 11th, 2020 

Iron (Fe) is a key element to sustaining life, but it is present at extremely low concentrations in seawater. This scarcity limits phytoplankton growth in large swaths of the global ocean, with implications for marine food webs and carbon cycling. The acquisition of Fe by phytoplankton is an important process that mediates the movement of carbon to the deep ocean and across trophic levels. It is a challenge to evaluate the ability of marine phytoplankton to obtain Fe from seawater since it is bound by a variety of poorly defined organic complexes.

Figure 1: Schematic representation of the reactions governing dissolved Fe (dFe) bioavailability to phytoplankton (a) Bioavailability of dFe in seawater collected from various basins and depth and probed with different iron-limited phytoplankton species under dim laboratory light and sunlight (b) (See paper for further details on samples and species)

A recent study in The ISME Journal proposes a new approach for evaluating seawater dissolved Fe (dFe) bioavailability based on its uptake rate constant by Fe-limited cultured phytoplankton. The authors collected samples from distinct regions across the global ocean, measured the properties of organic complexation, loaded these complexes with a radioactive Fe isotope, and then tracked the internalization rates from these forms to a diverse set of Fe-limited phytoplankton species. Regardless of origin, all of the phytoplankton acquired natural organic complexes at similar rates (accounting for cell surface area). This confirms that multiple Fe-limited phytoplankton species can be used to probe dFe bioavailability in seawater. Among water types, dFe bioavailability varied by ~4-fold and did not clearly correlate with Fe concentrations or any of the measured Fe speciation parameters. This new approach provides a novel way to determine Fe bioavailability in samples from across the oceans and enables modeling of in situ Fe uptake rates by phytoplankton based simply on measured Fe concentrations.

 

Authors:
Yeala Shaked (Hebrew University of Jerusalem)
Kristen N. Buck (University of South Florida)
Travis Mellett (University of South Florida)
Maria. T. Maldonado (University of British Columbia)

 

Hurricane-driven surge of labile carbon into the deep North Atlantic Ocean

Posted by mmaheigan 
· Thursday, February 27th, 2020 

Tropical cyclones (hurricanes and typhoons) are the most extreme episodic weather event affecting subtropical and temperate oceans. Hurricanes generate intense surface cooling and vertical mixing in the upper ocean, resulting in nutrient upwelling into the photic zone and episodic phytoplankton blooms. However, their influence on the deep ocean is unknown.

Figure 1. (a) Particulate organic carbon (POC) flux and percentage of the total mass flux (yellow) (top panel); fluxes (middle panel) and POC-normalized concentrations (bottom panel) of diagnostic lipid biomarkers for phytoplankton-derived and labile material, zooplankton, bacteria, and other (see legend); (b) Lipid concentrations (left panel) and POC-normalized concentrations (right panel) of diagnostic lipid biomarkers for the same sources as in (a) (see legend) measured two weeks after Nicole’s passage (25-29 Oct. 2016). Shown for reference are total lipid concentration profiles in April 2015 (dark gray, typical post spring bloom conditions) and Nov 2015 (light gray, typical minimum production period).

In October 2016, Category 3 Hurricane Nicole passed over the Bermuda time-series site (Oceanic Flux Program (OFP) and Bermuda Atlantic Time-Series site (BATS)) in the oligotrophic NW Atlantic Ocean. In a recent study published in Geophysical Research Letters, authors synthesized multidisciplinary data from hydrographic and phytoplankton measurements and lipid composition of sinking and suspended particles collected from OFP and BATS, respectively, after Hurricane Nicole in 2016. After the hurricane passed, particulate fluxes of lipids diagnostic of fresh phytodetritus, zooplankton, and microbial biomass increased by 30-300% at 1500 m depth and 30-800% at 3200 m depth (Figure 1a). In addition, mesopelagic suspended particles were enriched in phytodetrital material, as well as zooplankton- and bacteria-sourced lipids (Figure 1b), indicating particle disaggregation and a deep-water ecosystem response.

These results suggest that carbon export and biogeochemical cycles may be impacted by climate-induced changes in hurricane frequency, intensity, and tracks, and, underscore the sensitivity of deep ocean ecosystems to climate perturbations.

Authors:
Rut Pedrosa-Pamies (Marine Biological Laboratory)
Maureen H. Conte (Bermuda Institute of Ocean Science and Marine Biological Laboratory)
JC Weber (Marine Biological Laboratory)
Rodney Johnson (Bermuda Institute of Ocean Science)

« Previous Page
Next Page »

Filter by Keyword

abundance acidification africa air-sea interactions air-sea interface algae alkalinity allometry ammonium AMOC anoxia anoxic Antarctic anthropogenic carbon aquaculture aragonite saturation arctic Argo arsenic Atlantic Atlantic modeling atmospheric carbon atmospheric CO2 atmospheric nitrogen deposition authigenic carbonates autonomous platforms bacteria BATS benthic bgc argo bio-go-ship bio-optical bioavailability biogeochemical cycles biogeochemical models biogeochemistry Biological Essential Ocean Variables biological pump biological uptake biophysics bloom blooms blue carbon bottom water boundary layer buffer capacity C14 CaCO3 calcification calcite carbon-climate feedback carbon-sulfur coupling carbon budget carbon cycle carbon dioxide carbon export carbon sequestration carbon storage Caribbean CCA CCS changi changing marine ecosystems changing marine environments changing ocean chemistry chemical oceanographic data chemoautotroph chesapeake bay chl a chlorophyll circulation climate change CO2 CO2YS coastal darkening coastal ocean cobalt Coccolithophores community composition conservation cooling effect copepod coral reefs CTD currents cyclone data data access data management data product Data standards DCM decadal trends decomposers decomposition deep convection deep ocean deep sea coral deoxygenation depth diagenesis diatoms DIC diel migration dimethylsulfide dinoflagellate discrete measurements dissolved inorganic carbon dissolved organic carbon DOC DOM domoic acid dust DVM earth system models ecology ecosystem state eddy Education Ekman transport emissions ENSO enzyme equatorial regions error ESM estuarine and coastal carbon fluxes estuary euphotic zone eutrophication evolution export EXPORTS extreme events extreme weather events faecal pellets filter feeders filtration rates fire fish Fish carbon fisheries floats fluid dynamics fluorescence food webs forams freshening freshwater frontal zone fronts functional role future oceans geochemistry geoengineering geologic time GEOTRACES glaciers gliders global carbon budget global ocean global warming go-ship grazing greenhouse gas Greenland groundwater Gulf of Maine Gulf of Mexico Gulf Stream gyre harmful algal bloom high latitude human food human impact hurricane hydrothermal hypoxia ice age ice cores ice cover industrial onset inverse circulation iron iron fertilization isotopes jellies katabatic winds kelvin waves krill kuroshio laboratory vs field land-ocean continuum larvaceans lateral transport LGM lidar ligands light light attenuation lipids mangroves marine carbon cycle marine heatwave marine snowfall marshes Mediterranean meltwater mesopelagic mesoscale metagenome metals methane methods microbes microlayer microorganisms microscale microzooplankton midwater mixed layer mixed layers mixotrophy modeling mode water molecular diffusion MPT multi-decade n2o NAAMES NASA NCP net community production new technology Niskin bottle nitrate nitrogen nitrogen fixation nitrous oxide north atlantic north pacific nutricline nutrient budget nutrient cycling nutrient limitation nutrients OA ocean-atmosphere ocean acidification ocean acidification data ocean carbon uptake and storage ocean color ocean observatories ocean warming ODZ oligotrophic omics OMZ open ocean optics organic particles overturning circulation oxygen pacific paleoceanography particle flux pCO2 PDO peat pelagic PETM pH phenology phosphorus photosynthesis physical processes physiology phytoplankton PIC plankton POC polar regions pollutants predation prediction primary productivity Prochlorococcus proteins pteropods pycnocline radioisotopes remineralization remote sensing repeat hydrography residence time resource management respiration resuspension rivers rocky shore Rossby waves Ross Sea ROV salinity salt marsh satell satellite scale seafloor seagrass sea ice sea level rise seasonal patterns sea spray seaweed sediments sensors shelf system shells ship-based observations shorelines silicate sinking particles size SOCCOM soil carbon southern ocean south pacific spatial covariations speciation SST stoichiometry subduction submesoscale subpolar subtropical sulfate surf surface surface ocean Synechococcus teleconnections temperate temperature temporal covariations thermocline thermohaline thorium tidal time-series time of emergence top predators total alkalinity trace elements trace metals trait-based transfer efficiency transient features trophic transfer tropical turbulence twilight zone upper ocean upper water column upwelling US CLIVAR validation velocity gradient ventilation vertical flux vertical migration vertical transport volcano warming water clarity water quality western boundary currents wetlands winter mixing zooplankton

Copyright © 2022 - OCB Project Office, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, MS #25, Woods Hole, MA 02543 USA Phone: 508-289-2838  •  Fax: 508-457-2193  •  Email: ocb_news@us-ocb.org

link to nsflink to noaalink to WHOI

Funding for the Ocean Carbon & Biogeochemistry Project Office is provided by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). The OCB Project Office is housed at the Woods Hole Oceanographic Institution.